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Abstract--The diversity factor is an essential tool used for 

loading of distribution transformers. Typically, diversity factors 

are approximate values and treated as deterministic. By 

calculating many sample diversity factors it is possible to develop 

statistics that describe the diversity factor and use these statistic 

to perform probabilistic transformer loading. Results from work 

reported here confirm the independence of the diversity factors 

calculated by bootstrap sampling of measured residential load 

data. This paper shows that the diversity factor is not normally 

distributed as assumed in other work. The Anderson-Darling 

test shows that the diversity factor obeys a gamma distribution. 

The statistical nature of the predicted demand with the statistical 

nature of the transformer loading capability can be merged to 

arrive at a quantifiable statistical assessment of transformer 

loading. 

Index Terms-Diversity factors, residential load data 

I. INTRODUCTION 

D IVERSITY factors are used by planning engineers to 
predict peak demand observed at a distribution 

transformer and select the transformers' MY A rating, or 
alternately, select the number of (residential) loads that may 
be connected to the transformer. If the incorrectly sized 
transformer is installed--{)r the number of loads connected too 
large-the demand peak at the transformer may be greater 
than the transformer's rating. Consistent overloading of the 
transformer will consume insulation life and reduce 
transformer life. Because perfect knowledge of neither the 
transformer rating nor the diversity factor exists, statistical 
properties of the transformer and diversity factor need to be 
used when sizing the transformer. The ultimate goal of the 
work reported here is to merge the statistical nature of the 
predicted demand with the statistical nature of the transformer 
loading capability. By merging these statistics, we arrive at a 
quantifiable statistical assessment of transformer loading and a 
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measure of the risk associated with that loading. We will 
show how the probability density function, PDF, for the peak 
load has been determined and how it can be used with the 
PDF of the transformer capability to quantify risk. 

Calculating diversity factors is not new. Diversity factor 
research has been completed for residential areas in Arkansas 
in [1], [2] and [ I I ]. The work completed in [ I ] used data for 
299 customers, which were divided into two groups based on 
the type of heating used by the customer. For Arkansas it was 
determined that customers with electric heating had different 
load profiles when compared to customers with non-electric 
heating. 

Reference [ I  I ]  presents the statistical properties of the 
diversity factors calculated in [ 1] and [2]. The diversity factor 
statistics were calculated for various group sizes (with 60 
replicates for each group size), and the OF's were determined 
to be random and normally distributed. 

In this paper we show that the normal distribution is a poor 
approximation to the OF's. Instead, we show that OF's more 
closely fit a gamma distribution. We show how the statistical 
model of the diversity factor along with a statistical model of a 
transformer can be used for statistical loading calculations. 

I I. CALCULATING THE DIVERSITY FACTOR 

Diversity factors (OF's) are complicated metrics that 
depend on many variables. For example, OF's depend on 
customer classes: residential, commercial, light industrial and 
heavy industrial. OF's vary by month or season, and vary for 
different regions of the country. 

I n  this analysis, we focus on OF's for residential loads of 
the arid southwest during the peak loading conditions, i.e., the 
summer season; however the techniques we use here can be 
extended to any region, any type of load and any season. 

The diversity factor, defines the relationship between the 
peak of the group load and the sum of individual load peaks 
over a specified period of time [8], [9]. 

I Individual Peaks 
DF = =------­

Group Peak 

where DF is the diversity factor which will vary based on the 
size and composition of the group. 

Our goal is to calculate the probability distribution of the 
DF for various group sizes. We then wish to use these 
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statistics to perform probabilistic transformer loading. 
To accomplish this goal, we obtained load data from Salt 

River Project (SRP) in Phoenix, Arizona. The raw data 
contained load data for 685 different residences for July, when 
the loads are the heaviest. The data consisted of customer 
load (MV A) averaged over fifteen-minute intervals. We did 
not have information about whether the homes in our sample 
had air conditioning units or swamp coolers. This would 
make some difference in the DF's calculated; however the 
difference is not expected to be great. Further, our study is 
aimed at sizing newly installed transformers and few if any 
new homes have swamp coolers installed. 

To calculate the probability distribution of the DF's we 
took repeated samples of residence data with replacement 
(a.k.a. bootstrapping [12]). Two pieces of information were 
taken from these samples. We first found the individual peaks 
for the residences selected and added these to get the sum of 
the individual peaks. We next added the load profiles of all of 
the residences sampled and identified the group peak. We 
then applied (1) to calculate the diversity factor. This process 
was repeated n times, where n is the number of replicates in a 
sample of DF's. In this study, a large sample with 1000 
replicates was used to calculate the DF for any desired group 
size, so that the DF's we calculated would be precise. From 
these samples we calculated the mean and the standard 
deviation. The means of the DF's are shown in Fig. I .  

This figure shows that minimum DF is 1 (as can easily be 
verified from (1)) and that the DF initially increases quickly as 
more customers are added to the group being observed. For 
larger group sizes, the diversity factor is less sensitive to 
number in the group. This behavior is consistent with that 
found in [8]. 
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Fig. I. Summer diversity factors for group sizes ranging from I to 50 for 
Phoenix, Arizona. 

III. SAMPLE INDEPENDENCE 

The objective of our work is to determine the statistics of 
the DF so that they can be used in probabilistic loading of 
transformers. To know whether we can assign any type of 
distribution to the DF's we calculate in Fig. 1, we must first 
show that the observed values of the replicates of the DF's for 
each group size are independent and random; this will allow 
us to conclude that the replicates within the sample are not 
correlated. 

The runs test is used to test if the observations within the 
samples are random independent variables [ 1 0]. The runs test 
can only use categorical data with two distinct cases. In the 
case of numerical data, any data points above the median are 
assigned to one category, and any data points below the 
median are assigned to a second category. Data points exactly 
equal to the median are ignored. In the runs test, a run is 
defined as a subsequence of like data points. If there are too 
few or too many runs within a sequence the hypothesis of 
randomness is rejected. 

Since only 60 replicates for each group size were used in 
[11], in this work we use only 60 replicates of DF's for each 
group size so that our results were comparable. 

Compared in TABLE I are the results of the runs test for 
the Arizona data and from the Arkansas data [11] for different 
group sizes. A zero in this table means the test for 
independence is passed; a one means the test for independence 
has failed. 

TABLE! 
COMPARISON OF RUNS TEST RESULTS FOR THE DIVERSITY FACTOR FOR 

SELECT GROUP SIZES FOR THE MONTH OF JULY WITH 60 REPLICATES 

Group Size Results from [II] Results from this Work 

2 I 0 

5 I 0 

1 0  0 0 

15 0 0 

20 0 0 

25 0 0 

30 I 0 

The results presented in TABLE I, indicate that the 
observations in the sample are random and independent 
variables. 

IV. CHI-SQUARE GOODNESS-OF-FIT TEST 

A. Testing Small Sample Sizes 

After concluding that the observations are independent 
random variables, the Chi-Square Goodness-of-Fit Test was 
used to determine whether the samples were normally 
distributed. If a sample is normally distributed, the mean and 
variance of the sample can be used to determine a confidence 
interval, given a required significance level. Once again, the 
results for Arkansas are reproduced in TABLE IT for easy 
comparison with the results produced for the Phoenix area. 
The results in TABLE II follow the same formatting as in 
TABLE I. The table consists of zeros and ones to indicate 
whether the Chi-Square Goodness-of-Fit test passes (the 
samples are normally distributed) or fails, where a numeric 
value of 1 indicates failure. The results produced by the two 
different studies are comparable. 

B. Testing Large Sample Sizes 

The Runs test and Chi-Square Goodness-of-Fit test 
conducted in the previous sections were repeated for a larger 
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number of replicates to test whether the previous conclusions 
(about independence and normality) would hold true. The 
runs test for independence supported the same conclusion 
regardless of the number of replicates. 

TABLEll 
COMPARISON OF CHI-SQUARE GOODNESS-OF-FIT RESULTS FOR TI-lE 

DIVERSITY FACTOR FOR SELECT GROUP SIZES FOR THE MONTH OF JULY WITH 
60 REPLICATES 

Group Size Results from [II] Results from this Work 

2 I 0 

5 I I 

1 0  I 0 

15 0 0 

20 0 I 

25 0 0 

30 0 0 

Chi-Square Goodness-of-Fit test results for larger replicate 
sizes yielded results that contradicted the conclusions of 
normality. Fig. 2 and Fig. 3 show the results of the Chi­
Square Goodness-of-Fit test for 100 and 1000 replicates 
respectively. Every bar in the graph indicates a point where 
the test for normality fails. 

6 11 16 21 26 31 36 41 46 
Group Size 

Fig. 2. Chi-Square Goodness-of-Fit test for different group sizes ranging from 
I to 50 where the diversity factor for each group size has I 00 replicates. 
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Fig. 3. Chi-Square Goodness-of-Fit test for different group sizes ranging from 
I to 50 where the diversity factor for each group size has I 000 replicates. 

The test for normality produced acceptable results when 
the sample had 100 replicates. Out of 50 trials, the test failed 

a total of 5 times. For the larger sample size with I 000 
replicates, the Chi-Square Goodness-of-Fit test failed 26 times 
out of 50. This indicates that the assumption of normality is 
suspect. 

It was concerning that the DF distribution appears normal 
for a small number of replicates and not normal when the 
number of replicates is larger. It is well known that the Chi­
Square Goodness-of-Fit test is the least powerful test because 
it depends on separating the data into arbitrary bins. We 
therefore turned to a test that is well known to be more 
powerful: the Anderson-Darling test [7]. A test is considered 
to be powerful if the probability of accepting the null 
hypothesis when the null hypothesis is wrong is low. 

V. ANDERSON-DARLING TEST 

The Anderson-Darling test is well known to be a more 
reliable indicator of normality than the Chi-Square Goodness­
of-Fit test because it can be performed on both binned and 
unbinned data, and provides equal sensitivity at the tails as the 
median [7]. 

The Anderson-Darling test calculates a test statistic, which 
is a large value when the data does not fit the distribution to 
which it is being compared. A corresponding p-value is 
determined which is the probability of observing the given 
statistic or one more extreme, assuming that the null 
hypothesis is true. It is generally accepted that p-values 
greater than or equal to 0.05 indicate that there is not 
sufficient evidence to reject the null hypothesis. The null 
hypothesis in our case is: the distribution is normal. We 
applied the Anderson-Darling test to the DF data set generated 
by bootstrapping. 

A. Testing the Adequacy of the Normal Fit 

The Anderson-Darling test for normality was repeated for 
the samples with 100 replicates, and again for the samples 
with I 000 replicates. The results produced from this test are 
presented in Fig. 4 and Fig. 5. Each bar in the graph indicates 
a point where the test for normality fails. 

In the case of 100 replicates, the test for normality failed 13 
times out of 50 trials. Comparing Fig. 4 and Fig. 2, one can 
see that when using the Anderson-Darling test, the test for 
normality fails more often than when using the Chi-Square 
Goodness-of-Fit test. 

Using the Anderson-Darling test, the test for normality 
failed 37 times when using 1000 replicates as shown in Fig. 5. 
From these results it can be concluded that the normal 
distribution is not the appropriate fit for the data. 

A visual test for normality is the normal probability plot. 
For normally distributed data, the DF data points generated by 
the bootstrapping procedure should lie along the straight line 
of Fig. 6; instead, the tails of the DF distribution diverge-for 
1000 replicates and a group size of 8. It is suspected that this 
divergence occurs because the DF has a lower bound of 1. 
(The DF is the ratio of the sum of the individual peaks divided 
by the group peak and will take on its minimum value of I 
when the group size is 1 or when all of the peaks of the loads 
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in the group have coincident peaks.) When the number of 
replicates is small, the probability of have DF data points near 
the lower bound is small. As the number of replicates 
increases, we are more likely to encounter a combination of 
loads that have coincident peaks (or nearly coincident peaks) 
and see an accumulation of data points near the lower bound; 
this will cause the tails of the distribution to diverge as shown 
in Fig. 6 and cause the test for normality to fail. 

6 11 16 21 26 31 36 41 46 
Group Size 

Fig. 4. Anderson-Darling test for different group sizes ranging from I to 50 
where the diversity factor for each group size has 100 replicates. 
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Fig. 5. Anderson-Darling test for different group sizes ranging from I to 50 
where the diversity factor for each group size has I 000 replicates. 

The weight of numerical evidence suggests that the DF's 
are not distributed normally. In addition, there is theoretical 
evidence to back this up. Recall that the normal distribution is 
not bounded; it ranges from negative infinity to positive 
infinity, while the distribution of DF's has a lower bound. 
Since the normal distribution is not bounded, it is unlikely that 
the normal distribution will fit DF data. Therefore, we chose 
to test whether a distribution with a lower bound might fit our 
data better. 

B. Testing the Adequacy of the Gamma Fit 

The gamma distribution may be a better fit for the diversity 
factors calculated because it has a lower bound of 0, and no 
upper bound. The DF's have a lower bound of I and no upper 
bound. To conform our data to the gamma distribution, it is 
necessary to subtract I from every DF data point generated by 

the bootstrapping procedure; we will call this shifting the DF 
data values. 
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Fig. 6. Nonnal probability plot for the diversity factor for group size 8, with 
I 000 rep! icates. 

From viewing the histogram of the data for group size 8 
with 1000 replicates in Fig. 7, the difference in the normal and 
gamma fit may not seem significant, but comparing the p­
values produces a more concrete and confident result. The p­
value corresponding to the normal fit for this sample is less 
than 0.005, whereas the p-value corresponding to the gamma 
fit is greater than 0.25. 
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Fig. 7. Probability density function for I 000 replicates of the shifted diversity 
factors for group size 8, with the corresponding normal and gamma fit. 

The shifted DF's for the different group sizes were fit to a 
gamma distribution using the Anderson-Darling test to 
determine if the fit was appropriate. The results for the 
Anderson-Darling test for the gamma distribution are 
presented in Fig. 8. 

The smaller group sizes do not fit the gamma distribution 
very well. The gamma distribution begins to fit the diversity 
factors better for a group size of 7 and larger. The probability 
plot assuming a gamma distribution for a group size of 8 is 
presented in Fig. 9. 

The probability plot for the gamma distribution (for a 
group size of 8 with I 000 replicates) shown in Fig. 9 fits the 
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data better than the probability plot for the normal 
distribution. Similarly the DF's for the larger group sizes fit 
the gamma distribution better than the normal distribution. 
We concluded that the gamma distribution is a more 
appropriate model to use when characterizing the DF. 
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Fig. 8 Anderson-Darling test for the gamma distribution for different group 
sizes ranging from I to 50 where the diversity factor for each group size has 
I 000 replicates. 
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Fig. 9. Gamma distribution probability plot for the shifted diversity factor for 
group size 8, with I 000 replicates. 

VI. LOADING OF DISTRIBUTION TRANSFORMERS 

Presently, distribution transformer loading is based on 
limited and possibly out of date data. Incorrect transformer 
sizing is very costly to utilities both oversized and undersized. 
Quantifying the uncertainties in both transformer peak 
demand and peak loading capability, will allow utilities to size 
transformers more accurately with quantified risk assessment. 

Since the DF depends on the data sample taken, the true 
diversity factor is not known, only its best estimate and its 
statistics. Likewise, the loading capability of distribution 
transformers, is not known exactly, but can be described 
statistically from measured data. For substation distribution 
transformers, [3]-[6], [13], the statistics of the ratings 
correspond to a normal density function. We assume in this 
work, as shown in Fig. 10, that the ratings of distribution 
transformers also correspond to normal density functions. 
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Fig. 10. Probability density function for a 50kVA distribution transformer 
with I kVA standard deviation. 

As previously stated, the ultimate goal is to merge the 
statistical nature of the predicted demand with the statistical 
nature of the transformer loading capability to arrive at a 
quantifiable statistical assessment of transformer loading and 
the risk associated with that loading. The probability density 
function, PDF, of the group peak, along with the PDF of the 
transformer rating can be used to determine the probability of 
overloading the transformer at a given group size. The PDF 
for the gamma distribution which describes the group peak is, 

-x 

G(x)=f(xla,fJ)= xa-le fJ (2) 
fJa T( a) 

where f( · ) is the gamma function, and x represents demand 
in kV A. The input parameters, a and p, depend on the group 
size being observed; in general, as the group size increases, a 
increases. 

The PDF for the transformer's rating is the normal 
distribution, 

-( x-f.Jp 
1 20'2 

N(x)=f(xlf.J,O')= �e 
uv27l 

where x is the transformer rating in kV A, cr is the standard 
deviation and J..l is the mean of the density. An example of the 
PDF for the group peak as well as the transformer rating is 
shown in Fig. 11. The two probability density functions can 
be merged to determine the probability of overloading the 
transformer as a function of group size. This probability is 
given by (4). 

p,ob O""'""d= 1.0-
x
I J G( x){!N( y )dy }x) {4) 

As an example, if the group peak, G(x), for a group size of 
35 (shown in Fig. 11) is to be served by a 50kV A transformer 
(with PDF N(x) shown in Fig. 11), the probability of 
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overloading the transformer is 26.7%, as shown in Fig. 12. 
This figure shows the probability of overloading a 50kV A 
transformer for group sizes which range from 25 to 50 
customers. This figure provides a direct way to assess risk in 
transformer loading. Using the data available to all utilities 
and the techniques proposed here, plots like Fig. 12 can be 
generated for any size transformer; and the loading assigned 
according to the desired amount of risk. 
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Fig. II. Probability density function, PDF, for the group peak for 35 
customers, and the PDF for a 50kVA transformer. 
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Fig. 12. Probability of overloading a 50kV A transformer as a function of 
group size. 

VII. CONCLUSION 

It was believed that diversity factors fit a normal 
distribution. This belief was based on the Chi-Square 
Goodness-of-Fit test and a limited number of replicates 
calculated by bootstrap sampling of residential loads. We 
show in this paper-by using the more powerful Anderson­
Darling test-that diversity factors do not fit the normal 
distribution, but instead fit a gamma distribution. This is not 
surprising since both the diversity factor and the gamma 
distribution have a lower limit and the normal distribution has 
no lower bound. 

We found that, to assess the risk of overloading 
transformers, the statistics of group peak-rather than 
diversity factor-are needed. Using these statistics, along 
with the statistical nature of the transformer loading 

capability, we showed how to assess risk to insulation life 
when assigning the number of homes to a transformer. 
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