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Abstract—In the interest of economic efficiency, design of 
distribution networks should be taillored to the demonstrated 
needs of its consumers. However, in the absence of detailed 
knowledge related to the characteristics of electricity 
consumption, planning has traditionally been carried out on the 
basis of empirical metrics; conservative estimates of individual 
peak consumption levels and of demand diversification across 
multiple consumers. Although such practices have served the 
industry well, the advent of smart metering opens up the 
possibility for gaining valuable insights on demand patterns, 
resulting in enhanced planning capabilities. This paper is 
motivated by the collection of demand measurements across 2,639 
households in London, as part of Low Carbon London project’s 
smart-metering trial. Demand diversity and other metrics of 
interest are quantified for the entire dataset as well as across 
different customer classes, investigating the degree to which 
occupancy level and wealth can be used to infer peak demand 
behavior. 

Index Terms--After diversity maximum demand, demand 
diversity, distribution network planning, smart meter. 

I. INTRODUCTION 
When designing a distribution substation and sizing assets 

such as transformers and cables, the peak coincident demand 
across the house-holds that each asset should serve is a key 
consideration. Underestimating the coincident peak demand, 
which in Europe typically occurs during low-temperature 
winter days, will result in undersized assets and an inability to 
service load during some periods. On the other hand, over-
estimating the peak coincident demand can lead to substantially 
cost-inefficient decisions, given that the same level of reliability 
could be provided with less expensive assets of reduced rating. 
Given that Distribution Network Operators (DNOs) have to 
meet strict reliability targets in combination with the inability 
to accurately infer the coincident peak demand of a group of 
consumers due to lack of instrumentation at the household 
level, DNOs have historically undertaken network design based 
on some pre-determined empirical metrics. These metrics are 
typically conservative to allow for worst case scenarios and 
have little customization related to the specific planning case at 
hand. The use of these general-purpose metrics is made possible 
because of the fact that the coincident demand of a large number 

of consumers exhibits reduced sensitivity to the attributes of 
individual consumers, which may otherwise vary wildly when 
viewed in isolation. This effect is known as demand 
diversification and is a very important concept that pertains to 
electricity consumption. Demand diversity exists because the 
use of individual appliances in different households occurs at 
different times due to consumers’ different schedules and 
preferences. It follows that accurately quantifying the effect of 
demand diversity is a quintessential aspect of efficient network 
design.  

In order to measure demand diversity, several metrics have 
been proposed in the literature. After-diversity maximum 
demand (ADMD) is one of the most commonly used metrics 
defined as the coincident peak demand attributed to each 
customer, as the number of customers connected to the network 
approaches infinity [1].  This metric can be applied to 
distribution network design in a straightforward manner in 
order to estimate the peak coincident load for a large number of 
consumers [2]-[4] and sizing network assets [5]-[6]. Another 
metric of interest is the coincidence factor (CF), defined as the 
ratio of the coincident peak demand of a group of customers to 
the sum of individual peak demands in this group [7]. CF has 
also been widely used in the past for planning studies as in [8] 
and [9]. Other metrics such as the diversity factor and 
conversion factor have also been proposed in the past for 
planning purposes as showcased in [10]-[12]. 

In the UK, ADMD is the metric of choice, having been fully 
incorporated in DNOs’ planning guidelines for asset sizing. In 
particular, for properties with up to 4 bedrooms and gas heating, 
an ADMD value of 2kW is used [12]. In case of no gas heating 
being available on the property, ADMD is increased to 3kW. In 
addition, the recommendation states that ADMD should be 
increased by 0.5kW for each additional bedroom. The effect of 
demand diversification is further taken into account by 
subsequently multiplying by a scaling factor to compute the 
coincident peak demand across  households (denoted by ), 
as shown in equation (1).  
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Accordingly, assuming up to four-bedroom households 
without electric heating, the effective ADMD value defined as 

 follows the curve shown in Fig. 1. 

 
Fig. 1. ADMD as a function of households as suggested by current UK 
planning methodology. For visual inspection, boxed numbers are provided for 
1,50, 100 and 200 households. 

 
As can be seen in Fig.1 above, the maximum demand for a 

single housheold is set at 9.8kW; ADMD subsequently follows 
an exponential decrease pattern, reducing considerably in the 
range of 1-50 households and thereafter achieving a steady-
state value that converges to 1.4kW per household. One crucial 
aspect to be highlighted in the overall calculation methodology 
is that there is little consideration of the particular details of 
individual households, (beyond heating type and an 
approximation of size) leaving little room for differentiation 
between areas of fundamentally different demographic 
makeup. It follows that this may be leading to highly 
conservative metrics to ensure the most adverse of possibilities 
are well covered, potentially resulting in asset overinvestment. 
The largest barrier to a transition to more custom and cost-
efficient design methodologies has been the unavailability of 
data to experimentally calculate and validate diversified 
demand across different consumer groups. This reality is now 
being changed by the advent of smart meters creating new 
information streams and raising the opportunity for in-depth 
exploration and quantification of residential demand. To this 
end, data measurements from smart meter trials setup in 
anticipation of the UK-wide rollout target of 2020 constitute a 
source of valuable information. 

The Low Carbon London (LCL) smart meter trial project 
[13] was setup as part of the UK regulator’s Low Carbon 
Network Fund to enable DNOs to improve the understanding 
of the electricity consumption in the UK. Along with the 
collection of demand measurements, an integral part of the trial 
was the classification of all participating households in terms of 
occupancy and wealth level, allowing for a further analysis of 
how consumption is affected  by  economic factors and the 
number of people residing in a given property. The idea of 
making use of demographic data has already been proposed in 
the past based on the fact that different consumer categories 
exhibit significantly different levels of demand diversification 
and electric consumption intensity. The availability of this 
experimental data presents an unprecedented opportunity to 
evaluate the applicability of traditional approaches to the 

modern reality of electricity consumption habits and to design 
novel distribution network design methodologies on the basis 
of new information derived from high-resolution smart meter 
measurements and demographic data. 

The paper structure is as follows: Section II introduces the 
the proposed methodology for quantifying demand diversity 
from experimental data. Section III presents the LCL dataset 
consisting of smart meter and demographic data; fundamental 
demand analyses are performed to show the main patterns of 
non-diversified and diversified demand.  In addition, we 
calculate ADMD  for the segregated subsets and investigate the 
relation wealth classes and occupancy levels.  Section IV 
summarises and concludes the analysis, highlighting future 
potential uses of the derived metrics and insights. 

II. DIVERSIFIED DEMAND QUANTIFICATION 
Estimating the maximum coincident demand of a group of 

consumers is at the heart of designing efficient distribution 
networks. To this end, as already mentioned, ADMD is a 
standard metric used for planning purposes in the UK and other 
jurisdictions worldwide. Formally, it is defined as the 
coincident peak electrical demand per customer as the number 
of customers approaches infinity. Given that the number of 
customers connected to a distribution asset can vary 
considerably, we extend the concept of ADMD to be a function 
of customers connected to the network. As a result,  
denotes the After Diversity Maximum Demand for  
customers. It is constructive to note that, as shown in equation 
(1) and also in Fig. 1,   ADMD typically reaches a steady state 
value after a large number of households is analyzed; we denote 
this steady state value by . Its value and the number of 
households at which it is reached are of great interest and one 
of the important outputs of the present research, along with 
analyzing how  evolves as a function of connected 
households. Given a data matrix D consisting of M observations 
of electricity demand measurements across N consumers (size 
denoted ), the coincident maximum demand  across 

 consumers is calculated according to equation (2). 
Subsequently,  is calculated by dividing the coincident 
peak demand by the number of customers, as shown in (3). 

 

 

In the cases that , the evaluation of equation (3) is 
trivial. However, in the cases that , the large number 
of possible ways to choose  households among a total of    
gives rise to a distribution of values instead of a single 
value; in fact, there exist  possible household 
combinations. Naturally, which houses are actually sampled 
gives rise to some variability; we communicate this variability 
through the explicit calculation of upper and lower bounds. To 
this end, in this analysis we are interested in computing the 
mean, minimum and maximum values, denoted by , 

and  respectively. Naturally, the 
maximum value is of most importance for practical planning 
purposes, but average and minimum values serve in gaining 
further insight towards diversity’s degree of variability and 
convergence behaviour. Furthermore, given that the number of 
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combinations grows extremely fast (for example there are over 
10 billion ways to choose 10 out of 50 households), a statistical 
approximation is necessary for its computation. To this end, 
random sampling techniques with replacement such as 
bootstrapping can be used to approximate the values of interest. 
In essence, instead of exhaustive enumeration we can perform 
the relevant calculations while only considering a smaller 
subset of   combinations, where k is the 
number of sampled combinations. In order to compute the 
distribution of , a sampling algorithm is proposed as 
follows.  
Step 1. Randomly select  households from the whole dataset 
D. Repeat this process times with replacement to construct  
subsets .   
Step 2. Calculate the maximum coincident demand of  
household for each subset and construct a new vector

 representing the sampled 
population of coincident peak demand levels. 
Step 3. Compute the expected, minimum and maximum value 
of .  

The above procedure is shown in detail in Fig. 2. 

 
Fig. 2. Sampling methodology for calculating the maximum, minimum and 
average  values from a large dataset. E{} represents the expectation 
operator. 

We continue with applying the presented calculation 
procedure to the analysis of the LCL dataset, where a  
parameter of 100,000 has been used for the cases 
where . 

III. ANALYSIS OF SMART-METERING DATA 
In this section, we present in detail the electricity 

consumption data measurements recorded by the smart meters 
and demonstrate how the customers have been split into 
categories based on property size and wealth. The peak demand 
distribution for all customer categories is shown and analyzed 
for the purpose of investigating wealth and occupancy level 
impact on electricity consumption in the absence of 
diversification. Subsequently, two analysis of ADMD are 
undertaken, one utilizing the entire LCL dataset and one 
focusing on segregated subsets, investigating the evolution of 
diversified demand  as a function of connected households and 
customer classification. 

A. Demand Dataset 
The Low Carbon London smart meter trials aim to 

characterize the residential consumer demand of London and to 
evaluate the benefits from exploiting smart metering for 
distribution network design. Within the scope of the LCL 
project, Landis and Gyr (L+G) E470 electricity meters were 
installed in 2,639 residential homes across the Mayor of 
London’s Low Carbon Zones (LCZ) and the London Power 
Networks (LPN) distribution network license area operated by 
UK Power Networks [14]. In particular, the Engineering 
Instrumentation Zones (EIZs) of the LCL trial included the 
areas of Brixton, Merton and Queen’s Park.  The LCL demand 
dataset consists of half-hourly load consumption data for a full 
calendar year from 1st January 2013 to 31st December 2013. As 
such, the dataset contains 17,520 half-hourly measurements of 
demand across 2,639 customers in kW. In addition, various 
socio-economic conditions of the participated household were 
recorded. In this paper we focus on the data pertaining to 
household occupancy and wealth level. The former relates to 
the number of people living in the property. The latter has been 
drawn on the basis of mapping all participating households to 
ACORN groups [15]. Subsequently, three wealth classes have 
been defined: Adverse, Comfortable and Affluent in increasing 
order. A customer category or class is defined as a combination 
of occupancy and wealth level. The number of customers 
belonging to each of the nine categories is shown in Table I. 

TABLE I.  NUMBER OF PARTICIPATING HOUSEHOLDS ACROSS 
CUSTOMER CATEGORIES 

 1 occupant 2 occupants 3+ occupants 
Adverse 315 278 234 

Comfortable 240 304 214 
Affluent 431 400 223 

 

As can be seen above, the LCL smart-metering trials have a 
good representation across all household classes with several 
hundred customers in each of the nine categories.  

B. Household peak demand analysis  
The LCL dataset is summarized in Fig.3 where we present 

how the peak demand varies within each of the nine categories. 
We plot the probability density of peak demand of individual 
households in order to extract some characteristics of interest as 
well as explore the variability of consumption patterns among 
households belonging to the same class. 

 
Fig. 3. Peak demand probability distribution across the nine customer 

categories. 
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The maximum demand measurement for each customer class, 
equivalent to  is shown in Table II. As can be seen 
below, the maximum demand recorded throughout the entire 
dataset is of 15.10kW form an Affluent 3+ household, while 
the group exhibiting the lowest peak demand of 6.26 kW is 
Adverse 1. It is imperative to highlight that these 
experimentally derived values do not agree with the current 
planning guidelines in UK, where the recommended sizing 
estimations for a single household of up to four bedrooms are 
9.80kW and 10.50kW for properties with and without 
electrical heating respectively. More specifically, in the cases 
of Adverse 2 and all categories with 3+ occupants the data 
gathered from the LCL trails suggest that the guideline values 
are above the suggested numbers, meaning there is a real risk 
of asset undersizing in some cases. This may be indicating that 
consumer habits are changing over time, increasing the number 
of electrical appliances in households. In general, the patterns 
of maximum peak demand are as expected, with larger and 
wealthier households displaying increased values. Notably, 
there are exceptions in the case of Comfortable 2, Comfortable 
3+ and Affluent 2 households, where they are slightly lower 
than their Adverse counterparts. These differences are 
relatively small and can be attributed to a single marginal case 
in the Adverse 2 class. These reversals indicate that worst case 
scenarios in the absence of diversification may be difficult to 
infer on the basis of wealth data. On the other hand, household 
size is confirmed to be clearly correlated with maximum peak 
demand and can be a useful proxy for sizing connections of 
individual households. This is especially important in light of 
the ease with which household data can be obtained compared 
to wealth level information as well as their longer-term 
persistence. 

TABLE II.  MAXIMUM PEAK DEMAND ( )  FOR DIFFERENT 
WEALTH AND OCCUPANCY CLASSES 

 1 occupant  2 occupants 3+ occupants 
Adverse 6.26 kW 10.53 kW 12.60 kW 

Comfortable 8.98 kW 9.17 kW 11.28 kW 
Affluent 9.06 kW 10.26 kW 15.10 kW 

 
Regarding the population distributions, as can be seen in 

Fig. 3, the peak demand curves exhibit a unimodal 
concentration towards larger values for the customers in the 
categories characterized by increased occupancy and wealth. 
There is a notable exception for ‘Affluent 1’ households, 
where two distinct peaks are observed. This in combination 
with the large range of values occupied highlights the fact that 
households belonging to this classification have significantly 
more variability among them and can potentially exhibit very 
high consumption levels. Further information obtained by 
observing the probability density plot is that the peak demands 
are mostly concentrated in relatively lower  values ranging 
from 2 kW to 8 kW. Notably, there is a very low probability 
that an extreme high value of peak demand occurs (e.g. above 
12 kW) across all categories. It is imperative to highlight that 
the above analysis only takes into account the peak demand of 
a single customer, while most of networks are designed to 

supply multiple customers. In this case the diversification 
effect becomes paramount, as shown in the following sections. 
C. ADMD analysis across all participating households   

In the previous subsection, we analyzed how the individual 
peak demand varies with occupancy and economic factors. In 
this section we investigate the diversified peak demand 
behavior as a function of connected customers. We compute 

  across all customers participating in the trial 
according to the methodology outlined in Section II and show 
the results in Fig. 4. As mentioned earlier, up to 100,000 
combinations have been sampled and three curves are 
provided. The black curve shows the maximum  
observed across the sampled combinations, 
denoted . Dark grey and light grey curves show the 
average and minimum values respectively. Note that in order 
to facilitate visual inspection, a plot inset has been provided 
zooming in the range of 1 to 500 households. This lower range 
can be of particular interest to distribution planners, enabling 
to better understand the effect of diversification when the 
number of customers is low and  is far from 
convergence. In addition, the values of  are shown 
in boxes for 1, 50, 100, 200, 300, 400 (inset), 500, 1000, 
1500, 2000 and 2500 households.  

 
Fig. 4.  across all participating households. 

D. ADMD analysis across customer categories  
In this section we investigate the diversified peak demand 

behavior as a function of connected customers. We compute 
  across the nine customer categories according to the 

methodology outlined in Section II and show the results in Fig. 
5.  As before, three curves are shown to describe the evolution 
of upper, lower and mean  values as a function of 
households; specific numbers are provided on the plots for 

1, 50, 100 and 200 households. Note that  values 
shown on the plot are same as in Table II. As before, the lower 
bound is the first to reach a steady state value, followed by the 
mean and then the upper bound. In addition, it is important to 
note that convergence of the upper bound to a steady-state value 
occurs after a few hundred households. The terminal  
values for the nine customer categories are shown in Table III.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
978-1-5090-4168-8/16/$31.00 ©2016 IEEE 



TABLE III.    FOR DIFFERENT WEALTH AND OCCUPANCY 
CLASSES BASED ON SMART-METERING MEASUREMENTS 

 1 occupant  2 occupants 3+ occupants 
Adverse 0.51 kW 0.81 kW 1.06 kW 

Comfortable 0.57 kW 0.91 kW 1.28 kW 
Affluent 0.75 kW 1.07 kW 1.72 kW 

Comparing  across different wealth and occupancy 
levels, it is apparent that the pattern observed in Table II does 
not persist. Whereas in the case of maximum peak demand, 
there were instances of Adverse and Affluent households 
exhibiting higher peak consumption than their Adverse 
counterparts, it is evident that diversified demand is clearly 
correlated with customer category. Note that this trend reversal 
occurs in the range of <50 households. This is an important 
insight showing that coincident demand across an increased 
number of households exhibits reduced sensitivity to the 
attributes of individual consumers (that may vary wildly across 
a group of households) due to the effect of demand 
diversification. As a result, we can conclude that wealth and 
occupancy information can both be useful proxies in inferring 
diversified demand as long as the number of customers is above 
the order of a few tens of households. Another important 
observation is that houses of increasing wealth and occupancy 
level have a less pronounced diversification effect. This can be 
inferred from the curve shapes that continue to reduce 
considerably past the 100 households range, suggesting 
increased variability of consumption patterns.  

 
Fig. 5.  for all nine customer categories. 

IV. CONCLUSIONS 
The LCL smart meter trial provides a vast number of high-

resolution residential demand measurements across 2,639 
customers. The analysis of this dataset has enables us to gain 
valuable insights towards the evolution of residential electricity 
consumption patterns in the UK and evlauate how they are 
affected by consumer demongraphic characterisics such as 
housheold occupancy and welath level. In addition, peak and 
diversified demand metrics have been analysed and quantified, 
aiming to inform future distribution planning processes. 

The paper first introduces distribution planning practices 
currently applied in the UK, based on the concept of ADMD, 
highlighting the practical significance of accurate diversified 
demand metrics. Subsequently, the LCL dataset is presented 
and analysed. Major conclusions stemming from this analysis 

are that the ADMD value calculated across all customers 
suggests that currently adopted values may be overestimating 
residential demand while also overestimating the degree with 
which ADMD converges as a function of connected customers. 
In addition, household occupancy is shown to be a primary 
driver of peak demand of individual households. Finally, both 
household occupancy and wealth level are shown to drive 
diversified demand, suggesting that there may be merit in novel 
planning methods that consider customers’ demographic 
makeup. 

Further research should propose novel methods for using the 
information extracted from the smart-meter data to design and 
operate distribution network in the smart grid era. Potential 
applications include the assessment of new connections for 
different mixes of consumers based on the detailed data 
presented in this paper. In addition, further temporal analysis of 
the dataset can provide useful insights towards electricity 
consumption patterns across different calendar seasons, days 
and hours. The outputs of such an analysis can be used for the 
optimization of outage management processes to minimize 
service disruptions.  
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