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Abstract 
Load forecasting is an important function in economic power generation, allocation 

between plants (Unit Cornmitment Scheduling), maintenance scheduling, and for system 
security applications such as peak shaving by power interchange with interconnected 
utiIities. In this thesis the problem of fùzzy short term load forecasting is formulated and 
solved. The thesis starts with a discussion of conventiona1 algorithms used in shoit-term 
load forecasting. These algorithms are based on least error squares and least absolute 
value. The theory behind each algorithm is explained. Three different models are 
developed and tested in the first part of the thesis. The first model (A) is a regression 
model that takes into account the weather pararneters in surnmer and winter seasons. The 
second mode1 (B) is a harmonies based model, which does not account for weather 
pararneters, but considers the parameters as a function of time. Mode1 (B) can be used 
where variations in weather paranieters are not available. Finally, model (C) is created as 
a hybrid combination of models A and B. The pararneters of the three models are 
estimated using the two static estimation algorithms and are used later to predict the load 
for twenty-four hours ahead. The results obtained are discussed and conclusions are 
drawn for these models. In the second part of the thesis new fuzzy models are developed 
for crisp load power with fuzzy load parameters and for fuzzy load power witb fiizzy load 
parameters. Three fuzzy models (A),(B) and (C) are developed. The fuzzy load model 
(A) is a fuzzy linear regression model for sunimer and winter seasons. Mode1 (B) is a 
harmonic fuzzy model, which does not account for weather parameters. Finally fiizzy 
load model (C) is a hybrid combination of fuzzy load models (A) and (B). Estimating the 
fuzzy parameters for the three models turns out to be one of linear optimization. The 
fuzzy parameters are obtained for the three models. These parameters are used to predict 
the load as a fuzzy function for twenty-four hours ahead. Prediction results are obtained 
and presented using data from Xo\.a Scotia Power and Environment Canada. 



Chapter 1 

Introduction 

1.1 Background 

Economic development, throughout the world, depends directly on the state of the 

availability of electric energy, especially since most industries depend almost entirely 

on its use. The availability of a source of continuous, cheap and reliable energy is of 

foremost economic importance. 

Electrical load forecasting is an important tod used to ensure that the energy 

supplied by utilities meets the ioad plus the energy lost in the system. To this end, a 

staff of trained personnel is needed to carry out this specialized fùnction. 

Load forecasting is always defined as basically the science or art of predicting the 

future load on a given system, for a specified period of time ahead. These predictions 

may be just for a fraction of an hour ahead for operation purposes, or as much as 

twenty years into the future for planning purposes 

The load forecasting can be categorized into three subject areas narnely (1 1. 
(a) Long-range forecasting, which is used to predict loads as distant as fifiy years 

ahead. so that expalision planning can be facilitated. 

(b) Medium range forecasting which is used to predict weekly, monthly and yearly 

peak loads up to ten years ahead, so that efficient operational planning can be camed 

out and, 

(c) Short range forecasting. which is used to predict loads up to a week ahead, so that 

daily ruming and dispatching costs can be minimized. 

In the above three categories. an accurate load model is developed to 

mathematically represent the relationship between the load and influential variables 

such as time, weather, economic factors etc.. . 

The precise relationship between the load and these variables is usually determined 

by their role in the load model. Once the mathematical model is constructed, the 

model parameters are determined by estimation techniques 



Exrapolating the mathematical relationship to the required iead-time ahead and 

giving the corresponding values of influential variables to be available or 

predictable,then forecasts can be made. Since factors such as weather and economic 

indices are increasingly difficult to be accurately predicted for longer lead times 

ahead, the greater the lead-time, the less accurate the prediction is likely to be. 

The final accuracy of any forecast thus depends on the load mode1 employed, the 

accuracy of predicted variables and the pararneters assigned by the relevant estimation 

technique. Since different methods of estimation will result in different values of 

estimated parameters, it follows that the resulting forecasts will differ in prediction 

accuracy. 

Over the past fi@ years, the parameter estimation algorithms used in load 

forecasting have been limited to those based on the least error squares minimization 

criterion, even though estimation theory indicates that algorithms based on the least 

absolute value critena are a viable alternative (44). 

In this thesis, the fûzzy systems theory is implemented to estimate the load model 

pararneters, which are assumed to be fuzzy parameters having certain middle and 

spread. Different membership functions, for load pararneters, are used narnely, 

tnangular membership and trapezoidal membership functions. The problem of load 

forecasting in this thesis is restricted to short-term load forecasting, and is formulated 

as a fiizzy linear estimation problem. The objective is to minimize the spread of the 

available data points, taking into consideration the type of the membership of the 

fuzzy parameters, subject to satisfying constraints on each measurement point, to 

insure that the original membership is included in the estimated membership. 

1.2 Outline of the Thesis 

In this thesis, fuzzy system theory is implemented to estimate the fuzzy load 

model pararneters, considered to be fizzy pararneters with certain middle and certain 

spread. 

Chapter Two gives a literature review, the state of the art, of the various 

algorithrns used during the past decades for short term load forecasting. A brief 



discussion for each algorithm is presented in this chapter. Advantages and 

disadvantages of each algorithm are discussed. Reviewing the most recent 

publications in the area of short terni load forecasting indicates that rnost of the 

available algonthms treat the pararneters of the proposed load model as crisp 

parameters, which is not the case in reality. 

Chapter Three proposes different load models used in load modeling for 24 

hours. Three models are proposed in this chapter, narnely model A, B and model C. 

Mode1 A is a multiple linear regression model of the temperature deviation, base load 

and either wind-chi11 factor for winter load or temperature humidity factor for the 

summer load. The pararneters of load A are assurned to be crisp pararneters in this 

chapter. The tcrm crisp parameters means clearly defined parameter values without 

ambiguity. 

Load model B is a harmonic decomposition model that expresses the load at any 

instant, t as a harmonic series. In this model, however, the weekly cycle is accounted 

for, by use of a daily load model, whose parameters are estimated seven times weekly. 

Again, the parameten of this model are assumed to be crisp. 

Load model C is a hybnd load model that expresses the load as the sum of a time- 

varying base load and a weather dependent component. This model is developed with 

the aim of eliminating the disadvantages of the other two models by combining their 

modeling approaches. 

After finding the parameter values, they are used to determine the electric load 

fiom which these parameter values are extracted and this value is called the estimated 

load. Then, the parameter values are used to predict the electric load for a randomly 

chosen day in the future and i t is called the predicted load for that chosen day. 

Chapter Four presents the theory invoived in different approaches that use 

parameter estimation algorithms. In the first part of the chapter, the crisp parameter 

estimation algon thms are presented, these inc lude the least error squares (LES) 

algorithrn, the least absolute value (LAV) algorithm. The second pu t  of the chapter 

presents an introduction to tùzzy set theory and systems followed by a discussion of 

fuvy  linear regression algonthms. Different cases for the fuzzy pararneters are 

discussed in this part. The first case is for the fuzzy linear regression of the linear 

models having fuzzy parameters with non-fuzzy outputs, while the second case is for 



the linear regression of hzzy parameters with fuzzy output, and finally the third 

case is for fuzzy parameters fomulated with fuzzy output of LR-type. 

Chapter Five presents the h i u y  modeling of electric loads for short tenn load 

forecasting. The models proposed in chapter three for crisp parameters are used in this 

chapter. Fuzzy model A, employs a muitiple fùzzy linear regression model. The 

membership function for the model parameters is developed, where triangular 

membership functions are assumed for each parameter of the Ioad model. Two 

constraints are imposed on each load measurement to insure that the original 

membership is included in the estimated membership. 

Fuzzy mode1 B, which is a h m o n i c  model, has been proposed as well in this 

chapter. This model involves firzzy parameters having certain median and a certain 

spread. Finally, a hybnd hzzy model C, which is the combination of the multiple 

linear regression model A and the hannonic model B, is presented in this Chapter. 

The models proposed, in chapter five, are used to estimate the load on an actual 

power system in operation, Nova Scotia Power Inc. The data for five years of the 

electric load together with the weather data are used in the forecasting process. 

Chapter Six gives the results obtained for the different proposed static models. 

The accuracy of forecasting is discussed in this chapter. A cornparison study is 

performed between the least error squares algorithm and least absolute value. 

Chapter Seven discusses the fùzzy short-term load forecasting results. In this 

chapter the fiizzy parameters of the three maodels A, B, and C are estimated based on 

fuzzy system theory and are used to predict ahead the load power. 

Chapter Eight gives a discussion of the results obtained and recommendations 

for the future research. A list of references and appendices are given at the end of the 

thesis. 



Chapter 2 

Short-Term Load Forecasting (STLF): 

The State of The Art 

2.1. Introduction 

Short-term load forecasting is an integral part of power system operation which is 

essential for securing an inexpensive supply of reliable electric energy. It is used to 

predict load demands up to a week ahead so that the day to day operation of a power 

system can be eficiently planned and so that the operating costs are minimized. 

Short-term load forecasting can be perforrned in one of two modes, namely on and 

O ff-line forecasting. This categorization, as the names suggest, stem from the areas of 

application of the load predictors. 

Off-Iine load forecasting is primarily implemented in the scheduling of the large 

generating units whose ka r t  up" times may Vary from a few hours ahead to a few 

days ahead. The scheduling process is termed unit commitment and ensures that there 

is sufficient operating generation capacity to meet the variable load demand with 

specified reliability [l]. When load forecasting is poor, incorrect scheduling may 

occur, resuiting in higher daily operational cost caused by use of higher cost quick 

start units in the event of under-scheduIing, or alternatively result in the uneconomic 

operation of large generating units in the event of over-scheduling [44]. 

On-line operation of a power system, the economic load dispatching to various 

generating units makes the generating mix dependant on calculations to minimize the 

cost function which is based on the characteristics of the generating units. These 

calculations are based on values of load demand predicted a few hours in advance, 

and as such the optimum generating mix is dependant upon the accuracy of the on- 

line forecasts. 

It has been recognized for long that accurate short-term load predictors as well as 

a load mode1 are basic necessities for the optimum economic operation of power 

systems. 



A prerequisite to the development of an accurate load-forecasting model is the 

understanding of the characteristics of the load to be modeled. This knowledge of load 

behavior is gained fiom expenence with the load and through statistical analysis of 

past load data. Utilities with similar climatic and economic environrnents usually 

experience similar load behavior and load models developed for one utility can 

usually be modified to suit another. 

2.2 Literature Review 

A review of the literature on short terni load forecasting indicates that many factors 

should be included in the load prediction model. Reference [ I l  reviews the short-term 

load demand modeling and forecasting for off-line and on-line ~mplementation. 

Included also in 111 is a review of most techniques used at that time, the merits and 

drawbacks of each approach are presented. Reference [ t )  presents an algonthrn based 

on curve fitting of past ioad growth for forecasting distribution system loads. The 

proposed algorithm in this reference uses clustering of histoncal load at the small area 

level as the forecast algorithm. References [3, 4) compare fourteen methods of 

forecasting future distribution system loads in terms of forecasting accuracy, data 

needs and resources. The tests of different forecast methods were carried out in as 

uniform a manner as possible. This reference daims that the selection of a forecast 

method is based on a great deal more criteria than those discussed in the reference. 

Data availability is usually an important factor, choice of a distribution load 

forecasting method may also be constrained by many other factors, including 

avaiiable computer resources and the level of expertise of the users. 

Reference [SI reviews some of the existing studies on one-to-twenty four hour load 

forecasting algorithms, and presents an expert system based algorithm as an 

alternative. This algorithm is developed on the logical and syntactical relationships 

between weather and load, and prevailing daily load shapes. It has been found in this 

reference that the proposed algorithm is robust and accurate and has yielded results 

that are equally good, if not better, when compared to the regtession based forecasting 

techniques. 



Reference [6] presents an adaptive nonlinear predictor with orthogonal escalator 

structure for short-term load forecasting. The proposed method in this reference uses a 

nonlinear time-varying functional relationship between load and temperature. 

Parameters in both linear and nonlinear parts of the predictor are updated 

systematically using a scalar orthogonalization procedure. Matrix operations are 

avoided, in this reference, which results in a more robust and better numerical 

properfy algorithm. This reference claims that there is no need for seasonal off-line 

mode1 calibration or modification since the proposed adaptive algorithm has good 

model tracking ability. 

Analysis and evaluation of five short-time load-forecasting techniques are 

performed in Reference [7]. The five techniques are; (1) Multiple linear regression, 

(2) Stochastic time series, (3) General exponential smoothing, (4) State space and 

Kalman filter and (5) Knowledge based approach. 

The use of a statistical decision fiinction is implemented in Reference [8j. A 

hierarchical classification algonthm is applied to hourly temperature readings to 

divide the historical database into seasonal subsets. These subsets are identified 

statistically to fit a response function for each season. For a given day, an appropriate 

model is selected by performing discriminate analysis. It has been found in this 

reference that the proposed algorithm is less sensitive to extreme values than other 

algorithms. Also, the parameters should be updated periodically using the most recent 

seasonal subsets. 

Reference [9] presents a robust model for forecasting power system hourly load. 

The method exploits the convenience of the auto-correlation function, and the partial 

auto-correlation function of the resulting differences previous load data identifying a 

sub-optimal model. The algonthm used in identiQing the parameters of the proposed 

load is the iteratively reweighted least squares. Three-way decision variables in 

identiQing an optimal model and the subsequent parameter estimates are used in this 

reference. These variables are; (1) the weighting function; (2) the tuning constant and; 

(3) the surn of the squared resiciuals. 



Reference [IO] presents formulation and analysis of short term load forecasting 

rule based algorithm. Load parameters are classified into weather and non-weather 

related values. The rules are the product of identifiable statistical relationship and 

expert knowledge. The forecasting algrithm puts smaller weight on the temperature 

effect and depends on the natural diversity of the load with a reduced or enlarged 

base. 

A knowledge-based expert system is proposed in Reference [ I l ]  for short-tenn 

load forecasting of a power system. The expert system is developed using a 5-year 

database. Eleven load shapes, each with different means of load calculations, are 

established in this reference. The effect of weather variables, such as temperature and 

humidity on load forecasting is examined. The effect of thermal build-up is also 

studied. The proposed expert system is used to forecast the hourly loads of a power 

system over a whole year using the past five-year data base. This reference claims that 

the developed expert system c m  serve as a valuable assistant to system operators in 

perfoming their daily ioad forecasting duties. 

Refaence [12] describes a linear regression-based model for the calculation of the 

short-term system load forecasts. The model, in this reference, bas the merits of; (1) 

innovative model building, including accurate holiday modeling by using binary 

variables; (2) temperature modeling by using heating and cooling degree fünctions; 

(3) robust parameter estimation and parameter estimation by using weighted least 

squares linear regression techniques; (4) the use of reverse" errors-in-variables" 

techniques to mitigate the effects of potential errors in the explanatory variables on 

load forecasts; and (5) distinction between time-independent daily peak load forecasts 

and the maximum of the hourly load forecasts in order to prevent peak forecasts from 

being negatively biased. Taken together, the above merits result in accurate, robust 

and adaptive response to changing conditions algorithm. 

Reference [13] develops a composite load model for 1-24 hours ahead prediction 

of hourly electric loads. The load model, in this reference, is composed of three 

components: the nominal load, the type load and the residual load. The Kalman filter 

algorithm is used to estimate the parameten of the nominal load together with the 



exponentially weighted recursive least square method. The type load component is 

extracted for weekend load prediction and updated by an exponential smoothing 

method. The auto regressive model predicts the residual load and the parameters of 

the models are estirnated using the recursive l es t  square method. 

In the last two decades ANN found wide applications in power system analysis and 

control. One of the successfûl applications is short-term load forecasting. References 

1141 and 115) present an approach using artificial neural network (ANN) for short- 

term load forecasting. In Reference [14] a neural network based on self-organizing 

feature maps to identiQ those days with similar hourly ioad patterns. The load 

patterns of several days in the past are averaged to obtain the load pattern of the day 

under study. The averaging days are of the same type of the day under study. In 

Reference El51 a feedforward multilayer neural network is designed to predict daily 

peak and valley loads. Once the peak load and valley load and the hourly load patterns 

are available, the desired hourly loads c m  be readily computed. The authors of these 

two references point out that the self-organizing feature map is capable of identifjhg 

a new type of load pattern before the operators can recognize the new day type. 

An adaptive load-forecasting algorithm for one-hour-ahead time period has been 

developed in Reference 1161. The major enhancement is the ability to forecast total 

hourly system load as far ahead as five days. An important benefit of the adaptive 

algorithm is the ability to predict load shapes in addition to daily peak loads. System 

operators are able to utilize the predicted load shapes of several-hou-old one- day- 

ahead or five-day-ahead forecasts, even when the individual hourly errors are rather 

large. 

Reference [17] presents an ANN method to forecast the short-term load for a large 

power system. The load is assumed to have two distinct patterns: weekday and 

weekend patterns. A nonlinear load model is proposed together with several structures 

of ANN. This reference claims that the neural network, when grouped into different 

load patterns gives good load forecast. It is found that the back propagation algorithm 

is robust in estimating the weights in nonlinear equation. 



A multilayer neural network with an adaptive learning algonthm is proposed in 

Reference [la] for short-term load forecasting. Effects of learning rate, momentum 

and other factors on the efficiency and accuracy of the back propagation-momentum 

leaming method are studied in this reference. The proposed adaptive learning 

algorithm converges much faster than the leaming rate and the initial value of the 

momentum wi 11 not affect the conventional back propagation momentum learning 

method and the convergence property of the adaptive leaming algorithm. 

Reference [19] presents an improved neural network approach to produce short- 

tenn electric load forecasts. In this approach a minimum distance measurement is 

used to identim the appropriate historical patterns of load and tempefanue readings to 

estimate the network weights. By using this strategy the problem of holidays and 

drastic changes in weather patterns, are overcome. This algorithm also includes a 

combination of linear and nonlinear terms which map past load and temperature 

inputs into the load forecast output. This reference demonstrates that even a simple 

three-layer network produces results which are quite favorable compared to those 

typically seen in the literature, with smaller absolute errors. 

Reference (201 reviews short term load forecasting techniques to find a standard 

for cornparison. Size of error can be used as a measure for cornparison standard. 

Reference [2lJ presents a non-hlly connected ANN model for short-terni 

forecasting. The model used in this reference consists of one main A c !  and three 

supporting A N N s .  Ttie main ANN is used to provide the models' basic forecast 

reference. Three supporting ANNs are added to increase the learning capacity of the 

proposed model. These supporting ANNs enable the model to better extract the 

relationships among different input categories, and achieve improved accuracy. In 

addition, three feedforward connections are established in the main ANN. These 

feed forward comec tions provide the most recent load and temperature re ferences and 

greatly improve leaniing efficiency. It is found that the model, compared with a fully 

connected ANN, requires less training time and fias better performance. 



Reference 122 ] presents an expert system using hiuy set theory for short-term load 

forecasting . The uncertainties in weather variables and statistical model are taken into 

account by using fuzzy set theory. Aiso incorporated into the system are the operator s 

heuristic rules. Two approaches based on the minimum-maximum algorithm and the 

equal-area criterion algorithm are proposed to determine the most desirable change in 

peak load fiom separate sources of fùzzy information. 

The ANN model, in Reference 1231 is claimed to be a useful tool for short-term 

load forecasting. Radically different ffom statistical methods, these models have 

s h o w  promising results in load forecasting. Reference 1231 concludes that, on the 

basis of the results obtained, there is no fum cnterion to select a suitable network 

structure for a set of hourly load and temperature data. Models are not unique, and 

systems with different load characteristics require different structures. However, once 

a model is identified for a given system, the model need not be modified frequently. 

Neural network models are sensitive to bad data, so that intelligent data filtering 

techniques need to be designed in order to maintain acceptable accuracy in the ANN 

models based load forecasts. 

Reference [24] presents a generalized short-term load-forecasting algorithm. This 

algorithm combines features fiom a knowledge base and statisticai techniques. The 

technique is based on a generalized model for the weather-load relationship, which 

makes it site-independent. However, adding the site-dependent characteristics easily 

customizes it. Such charactenstics are formulated in the f om of selection and 

adjustment rules. Once added, these rules are expected to improve the performance of 

the algorithm for a specific site. The technique in this reference has been proven to be 

fairly robust, inherently updateable, and allows operator intervention if necessq. It 

does not require more than three years of past data. 

Based on the attractive features of both distributed artificial intelligence and 

existing load forecasting techniques a distributed problem solving system for short- 

term load forecasting is presented in Reference [25]. Such a distributed paradigm is a 

multi-agent system, each processing agent of which can compute autonomously and 

cooperate with other agents to reason an accurate and satisfactory solution for load 



forecasting. The designed load forecasting system solves problems using three basic 

modules: a backboard module, knowledge sources, and a control mechanism. In this 

reference, the existing techniques are embedded in the domain knowledge source. 

Reference 126) presents an algorithm using an unsupervisedkupervised leming 

concept and ?he historical relationship between the load and temperature for a given 

season, &y type and hour of the day to forecast hourly electric load with a lead time 

of 24 hours. An additional approach using fbnctional link net, temperature variables, 

average load and the last one - hour load of previous day is introduced and compared 

with the ANN model with one hidden layer load forecast. Examination of load shapes 

indicated that the five working days, Saturdays, Sundays and holidays should be 

separately treated. 

References (27) and (281 present the applications of ANN to short-term load 

forecasting. Reference (271 investigates the effectiveness of ANN in short-term load 

forecasting. It has been shown that the application of a combined solution using 

artificial neural networks and expert systems yields a good short-term load forecast 

which neither system alone can provide. 

Reference 1281 appiies another type of neural network, called the radial basis 

function (RBF) neoivork to the SLF. The results obtained using both radial ba is  

function network and back propagation network indicate that the RBFN model 

performs better than the BPN model. It is claimed that the RBFN model can also 

compute reliability measures. which is an added advantage of the RBFN model. These 

rneasures provide confidence intervals for the forecasts and an extrapolation index to 

detemine when the model is extrapolating beyond its original training data. 

Reference 1291 presents an adaptive neural network based short-term load 

forecasting system. The system accounts for seasonal and daily characteristics, as well 

as abnomal conditions such as cold fionts, heat waves, holidays and other conditions. 

The algorithm in this reference is capable of forecasting load with a lead-time of one 

hour to seven days. The adaptive mechanism is used to train the neural networks 

when on-line. 



Reference (301 presents an adaptive auto-regressive moving average (ARMA) 

rnodel for SLF of a power system. In this reference, the Box-Jenkins transfer fûnction 

is considered as one of the better accurate rnethods, but it has limited accuracy 

without adapting the forecasting errors available to update the forecast. The adaptive 

approach first derives the error leaming coefficients by virtue of minimum mean 

square error (MMSE) theory and then updates the forecasts based on the one-step- 

ahead forecast errors and the coefficients. The proposed algorithm in this reference 

c m  deal with any unusual system condition. It is shown that the proposed adaptive 

ARMA is more accurate than the conventional Box-Jenkins approach. 

Reference (311 presents a survey for applying fuzzy systems in power systems. It 

discusses five forecasting methods. These methods are already presented in reference 

~ 4 1 .  

Reference (32) presents a highIy adaptable and robust short-term load-forecasting 

algorithm. Adaptive general exponential smoothing augmented with power spectnim 

analysis is used to account for the changing base load component. The algorithm 

includes an adaptive auto-regressive modeling technique enhanced with partial auto- 

correlation analysis to model the random component of the load. The load consists of 

a base load, weather-sensitive load and random load components. The Akaike 

information critenon (AIC) is employed to generate mode1 parsimony. The weighted 

recursive least square estimation algorithm with variable forgetting factors is applied 

to estimate model parameters. A nonlinear weather-sensitive rnodel is used to present 

the influence of weather changes on energy consumption. This reference claims that 

the approach has the capacity to better track load changing patterns and the human 

intervention of this technique is a minimum, which enhances the suitability of the 

approach for online applications 

Reference (331 presents a hybrid model for short-term load forecast that integrates 

artificial neural networks with fuzzy expert systems. The load is obtained in two 

steps. In the first step, the ANN'S are trained with load patterns corresponding to the 

desired forecasted hour, and the trained ANN's obtains the provisional forecasted 

load. In the second step, the fuzzy expert systems modiQ the provisional forecasted 



load considering the possibility of load variation due to changes in temperature and 

the nature of the day if it is a holiday. 

References [34,35] present a h z y  system for SLF. The hiuy system has the net 

structure and training procedures of a neural network and is called neural fuzzy 

network (FNN). An FNN initially creates a rule base fiom historical load data. The 

parameters of the rule base are then turned through a training process, so that the 

output of the FNN matches the available historical load data adequately. Once trained, 

the FNN can be used to forecast future load. 

Reference 1361 proposes an optimal fuzzy inference method for short-texm load 

forecasting. This reference constmcts an optimal stnicture of the simplified firzzy 

inference that minimizes model errors and the number of membership functions to 

grasp the nonlinear behavior of power system short-tem loads. Simulated annealing 

and the steepest descent method identi@ the model parameters in this reference. 

Reference [37] proposes an evolutionary progranuning (EP) approach to identify 

the parameters of an auto-regressive moving average with exogenous variable 

(ARMAX) model for one day to one-week ahead hourly load demand forecasts. The 

surface of the forecasting error function possesses multiple local minimum points. 

Soiutions of the traditional gradient search based identification technique therefore 

rnay stall at the Iocal optimal points, which results in an inadequate model. By 

simulating natural evolutionary process, the EP algorithm offers the capability of 

converging towards the global extreme of a complex error surface. The results 

obtained using this approach indicate that this algonthm provides a method to 

simultaneously estimate the appropriate order and parameter values of the ARMAX 

model for diverse types of load data. 

Reference 138) presents the application of ANN to determine the short-term load 

forecasting while paying attention to accurate modeling of holidays. A single neural 

network with 24 output is used for the short term forecasting for al1 day types. 

Reference (39) compares three techniques; f'uzzy logic (FL), neural networks 

(NN) and auto-regressive (AR) for very short texm load forecasting. The authors find 

a simple satisfjmg dynamic forecaster to predict the very short terni load trends on 



line. FL and NN are good candidates for short terni load forecasting. A neural 

network technique for electric load forecasting based on weather compensation 1s 

presented in References 140) and [41]. The method is a nonlinear generalization of 

Box and Jenkins approach for non-stationary time-series prediction. A nonlinear auto- 

regressive integrated (NARI) mode1 is identified to be the most appropriate mode1 to 

include the weather compensation in short-term eleceic load forecasting. A weather 

compensation neural network based on an NARI mode1 is implemented for one-day 

ahead electric load forecasting. This weather compensation neural network can 

accurately predict the change of eleceic load consumption for the coming day. Based 

on the results obtained, the authors claim that this methodoiogy is capable of 

providing more accurate load forecast. 

Previous experience with basic ANN architectures have shown that, even though 

these architectures provide results comparable with these obtained by human 

operators for most normal days, they show some deficiencies in the accuracy when 

applied to "anomalous" load conditions occurring during holidays and long weekends 

142). Reference 1421 proposes a specific procedure based upon a combined 

unsupervised~supervised approach. In the unsupervised stage a preventive 

classification of historical load data by mean of a Kohonen self organizing map is 

provided, while in the supervised stage, the proper forecasting activity is obtained by 

using a multi-layer perception with a back-propagation learning algorithm. 

Reference 143) proposes a method for short-term load forecasting which would 

help demand side management. The proposed method is based on Kalman filtering 

algorithm with the incorporation of a "fading memory". The load is forecasted in two 

stages. Ln the first stage the mean is first predicted, while in the second stage, a 

correction is incorporated in real time using error feedback from the previous hours. 

The authors claim that the proposed algonthm is suitable for developing countries 

where the total load is not large, especially at substation levels, and the data available 

are grossly inadequate. In this reference, the fading-memory Kalman filter assigns 

variable weight to past data. This causes reduction of the dependence on data for back 

into the past, and also improves the accuracy of prediction to a certain extent. Also, it 



was suggested that the space for storage and the time taken for computation are both 

significantly Iow and make this method highly suitable for use in small computers. 

Reference 1441 compares two linear static parameter estimation techniques as they 

apply to the twenty-four hour off-line forecasting problem. Three 24-hours load 

models are used. The least error squares and the least absolute value based linear 

propamming algorithm are the two parameter estimation approaches used to estimate 

the parameters of the three models. The three load models are (1) a multiple linear 

regression model, (2) a harmonic decomposition model and (3) a hybrid multiple 

linear regression/harmonic decomposition model. It is concluded that if the data 

source is fiee of errors, both techniques produce the same degee of accuracy for the 

three models. However, if the data source is contaminated with gross errors, then the 

use of the least absolute value cnterion, will result in greater prediction accuracy. 

A method of forecasting the hourly load demand on power system and uses 

threshold auto-regressive models with a stratification rule is presented in [45]. By 

using the threshold model algorithm, fewer parameters are required to capture the 

random component in load dynamics. Based on the results obtained, the authors 

conclude that : (a) the optimum stratification rule attempts to remove any judgrnental 

input and to render the threshold process entirely mechanistic, (b) the simplicity of the 

proposed threshold auto-regressive model varies under different perspectives, such as 

the piecewise linear algorithms and the threshold procedures of the stratification to 

effectively handle non-stationary. Therefore, the simplicity consists of finding 

architectures, which are auto-regressive to model the non-linearity of the senes, and 

economical in terms of pararneters, (c) the high level of achievement is due prirnarily 

to a more accurate AR modeling in a threshold model, and the threshold .4R model's 

ability to respond rapidly to sudden changes. 

Reference (461 develops a forecasting model for one-day ahead. This model 

identifies a "normal" or weather-insensitive load component and a weather-sensitive 

load component-linear regression analysis of past load and weather is used to identie 

the normal load model. The weather-sensitive component of the load is estimated 

using the parameten of the regression analysis. In this reference, an automated load 



forecasting system is presented that includes adaptability to changing operational 

conditions, computational economy and robustness. Also, presented in this reference 

is the monthly error statistics of forecast load for only one day ahead for recorded 

weather conditions. 

Reference [47) presents a fÙnctionaI-link network based short-term electric load 

forecasting system for real time implementation. The load and weather parameters are 

modeled as noniinear ARMA process and parameters of this model are obtained using 

the functional approximation capabilities of an auto-enhanced functional link 

network. The adaptive mechanism with a nonlinear learning mle is used to train the 

link network on-line. The results obtained in this reference indicate that the îùnctional 

link net-based load forecasting system produces robust and more accurate load 

forecasts in cornparison ta simple adaptive neural network or statistical based 

approac h. 

Reference [48] describes a load forecasting system called ANNSTLF (Artificial 

Neural Network Short-term Load Forecasting). This system is suggested to be used 

now by many utilities across North America. The effects of temperature and relative 

humidity on the load are considered. ANNSTLF contains also forecasts that can 

generate the hourly temperature and relative humidity forecasts needed by the system. 

ANNSTLF is based on a multiple ANN strategy that captures various trends in the 

data. The building block of the forecasters is a multilayer neural network trained with 

the error back-propagation learning rule. To adjust the ANN weights during on-line 

forecasting, an adaptive scheme is employed. The forecasting models are site 

independent and only the number of hidden layer nodes of ANN's need to be adjusted 

for a new database. 

Reference [49] presents a "Quasi Optimal" neural network to solve the short-term 

load forecasting problem. Rules for building a "quasi optimal" neural network to 

solve the STLF are derived. It is demonstrated that the "quasi optimal" neural network 

is superior to an automated Box-Jenkins seasonal A R M A  model in solving the STLF 

problem. Most significantly, the authors demonstrate how orthogonal fiactional 

factonal designs can be used to understand how technical issues that arise in creating 



a neural network affect singularly, and in pairs, the performance of the network is 

solving the STLF problem. 

An algorithm using cascaded leaming algorithm together with the historical load 

and weather data is presented in (50) to forecast half-hourly load for the next 24- 

hours. This cascaded neural network algorithm (CAM'S) includes peak, minimum, 

and daily energy prediction as additional input data for the final forecast stage. These 

additional input data are predicted using the first ANN's model. 

The use of a weighted least square procedure when training a neural network to 

solve the short-term load forecasting problem is presented in 1511. It is s h o w  that a 

neural network that implements the weighted least squares procedure outperforms a 

neural network that implements the least squares procedure during the on-peak period 

for the two performance criteria specified; mean absolute error and cost, and during 

the entire penod for the cost criterion. This reference has shown the potential benefit 

of using a cost-based weighted least squares training approach. 

Reference 1521 postulates that the load can be modeled as the output of some 

dynamic system influenced by a number of weather, time and other environmental 

variables. Recurrent neural networks, being members of a class of connectionist 

models exhibiting inherent dynamic behavior, can thus be used to constmct ernpincal 

models for this dynamic system. This reference claims that due to the nonlinear 

dynamic nature of these models, the behavior of the load prediction system can be 

captured in a compact and robust representation. 

Reference [53] presents a self organizing model of fuzzy auto regressive moving 

average with exogenous (FARMAX) variables for one day ahead hourly load 

forecasting of power systems. A cornparison between the existing and ARAMAX 

model values shows reduction in error for forecasting results. 

An efficient modeling technique based on fuzzy curve notation is presented in 

References 1541 to generate fuzzy models for short-tem load forecasting. The steps in 

this approach are: (a) prediction of the load curve extremals @eak and valley loads) 

using separate f uzy  models, (b) formulation of the representative day load curve to 



the forecasted peak values to obtain the predicted day load curves, and (c) 

transformation of the representative day load c w e  to fit the forecasted peak and 

valley loads in order to obtain the final next days' load curve forecast. 

References [SS] presents an approach to short-time load forecasting by the 

application of non-pararnetnc regression. The method is derived fiom a load mode1 in 

the form of a probability density function of load and load affecting factors. A load 

forecast is a conditional expectation of load given the time, weather conditions and 

oiher expianatory variables. This forecast can be calculated directly fiom historical 

data as a load average of past observed loads with the size of the local neighborhood 

and the specific weights on the load defined by a multivariate product kemel. The 

procedure requires a few parameters that can be easily calculated h m  historical data 

by applying the cross-validation technique. 

Reference (561 describes a method for input variable selection for artificial neural 

network (ANN) based short-term load forecasting (STLF). The method is based on 

the phase-space embedding of a load time-series. The accuracy of the method is 

enhanced by the addition of temperature and cycle variables. This reference compare 

it favorably to the ones reported in the literature, indicating that a more parsimonious 

set of input variables cm be used in STLF without sacrificing the accuracy of the 

forecast. This allows more compact ANNs. smaller training sets and easier training. 

Reference [57] studies a short-term electric load forecasting technique using a 

multi-layered feedforward ANN and a fuzzy set-based classification algorithrn. The 

hourly data is subdivided into various classes of weather conditions using the fùzzy 

set representation of weather variables and then the ANNs are trained and used to 

perform the load forecasting up to 120 hours ahead accurately. 

Reference [58) presents an architecture which is substantiall y changed from the 

earlier neural network techniques. It includes only two ANN forecasters, one predicts 

the base Ioad and the other forecasts the change in load. The final forecast is 

computed by adaptive combinations of these two forecasts. The effects of humidity 

and wind speed are considered through a linear transformation of temperature. This 

algorithrn significantly improves the accuracy of the holiday forecasts. 



Reference (59) presents a method that is suitable for power system operational 

planning studies. Bayesian estimation is used to predict multiple step ahead peak 

forecasts using peak and average temperature forecasts as explanatory variables. 

Furthemore, the authors claim that better results cari be obtained, with more attention 

paid to mode1 identification. 

Reference [6O] describes the application of ANN in forecasting short term load 

using a multilayer perceptron. ANN combines both time series and regression 

approaches to predict load demand. A functional relatioship between weather variable 

and electrical load is not needed because ANN c m  generate the hnctional 

relationship in learning and training the data. 

A fuzzy modeling method is developed in Reference [6l J for short-terrn load 

forecasting. In this method, identification of the premise part and consequent part is 

separately accomplished via the orthogonal least square JOLS) technique. The OLS is 

first ernployed to partition the input space and determine the nuniber of fûzq rules 

and the premise parameters. In the sequel, a second orthogonal estimator determines 

the input terms that should be included in the consequent part of each fuzzy rule and 

calculate its parameters. Different mociels are deveioped for each day type in every 

season. 

Reference [62] presents a self-supervised adaptive neural network to perfom 

STLF for a large power system covering a wide service area with several heavy ioad 

centers. The self-supervised network is used to extract corrolation features from 

temperature and load data. The authors' design provides a good adaptability using a 

rapid, on-line training mode that is crucial in applications, where the source statistics 

are non-stationary or where the forecaster is used with different power systems. 

The behaviour of electric power systems and networks varies considerably due to 

their characteristics. There does not appear to be one forecasting method that fits al1 

power systems. In fact, the electric load on each system may be forecasted using 

di fferent techniques to suit di fferent situations. 



Chapter 3 

Short Term Load Forecasting 

3.1 Introduction 

In short-term load forecasting, the future load on a power system is predicted bu 

extrapolating a pre-detemined relationship between the load and its influential 

variables, namely time and/or weather. Determining this relationship is a No-stage 

process that requires (a) identimng the relationship between the load and the related 

variables, and (b) quantifiing this relationship thraugh the use of a suitable parameter 

estimation technique. 

A prerequisite to the development of an accurate load-forecasting mode1 is an in 

depth understanding of the characteristics of the load to be modeled. This knowledge 

of the load behavior is gained fkom experience with the load and through statistical 

analysis of past load data. Utilities with similar climatic and economic environments 

usually experience similar Ioad behavior and load models developed for one utility 

c m  usually be modified to suit another (441. 

The review of the literature on short-terni load modeling of chapter 2, indicates 

that the load supplied by a power system is dynamic in nature and directly reflects the 

activities and conditions in the surrounding environrnent. This load can be separated 

into a standard or base load, a weather dependent load and a residual load. In the 

following sections the characteristics of each of these cornponents are reviewed in 

tum 17,441. 

3.2 Base Load 144) 

This load results from the business and economic conditions of the service area, 

and is the largest component of total system load. It accounts for approximately 90% 

of total load and can be spectrally decomposed into four distinct components, namely: 

(a) A long-term component that reflects the economic growth of the area and is 

usually directly proportional to the growth of the national economy. 



(b) A seasonal component that results from changes in elechicity demand from one 

season to another. In North Amenca this load pattern is characterized by 

midwinter and midsurnmer peaks inrer-spaced by troughs occumng dunng the 

central spring and au- seasons. 

(c) A weekly load cycle that results fiom the consurnption pattern of one day of the 

week being characteristically different from the others. Weekly business cycles 

and repetitive local activities are the main reasons for this aspect of load behavior 

that is characterized by relatively constant mid-week demands and smaller 

weekend loads. 

(d) A daily load cycle that results fiom the basic daily similarity of crinsumer 

activities. Low early moming demand peaking at mid-aftemoon high usually 

characterizes this load cycle. 

3.3 Weather Dependant Load 1441 

The weather contnbutes significantly to the dynarnics of the load, and much effort 

was spent to find a viable relationship between the weather and the load, so that an 

accurate load model could be developed. The survey of the literature in the second 

chapter, indicates that each utility has its own load model that depends on the weather 

of that load the utility is serving, and a load model for a utility does not necessanly 

suit (fit) the load of another utility. 

The effects of weather on load are usually modeled by expressing the load as a 

linear regression of explanatory meteorological factors such as temperature, wind 

speed, humidity etc. While it is recognized that an extremely wide variety of 

explanatory weather variables are required to totally represent the effects of weather, 

studies have shown that a few basic meteorological factors usually account for most 

of the weather dependent load. 

The specific weather variables that are normally used to model weather dependent 

load are dry bulb temperature, wind-speed, humidity and daylight illumination. The 

latter is usually the least significant of these weather variables and since its metenng 

is dificult and costly, it is usually omitted fiom most models. The general effects of 

these weather variables on load are summarized next [ f ,  44). 



33.1 Temperature 

In most load environrnents, dry bulb temperature is the most significant weather 

variable and usually accounts for the largest percentage of weather dependent load. 

Deviations of temperature from the n o m  can result in major changes in the load 

pattern. These changes however, do not occur immediately, but are rather delayed due 

to thermal storage in buildings. 

The effects of temperature on load pattern are not uniform and are different from 

one utility to another and £kom one season to the next. A decrease in temperature 

below room temperature during the winter season means an increase in the heating 

load, but an increase in the temperature above room temperature during summer 

means increasing of air conditioning load (increasing the cooling load). 

Temperature effects are usually modeled by considering the load to be a function 

of the effective temperature or temperature deviation, rather than the actual 

temperature. This stems fiom the realization that the general effects of base 

temperature are already included in the seasonal load cycle and only deviations from 

the n o m  will result in load changes. 

In other words, each utility Company designs the base load according to the normal 

temperature of the environment of that load, and any temperature deviation will lead 

to changes in the load. 

3.3.2 Wind Speed 

A factor that can contribute significantly to the weather dependent load is wind. 

Wind effects are especially prevalent dut-ing winter and are a direct consequence of 

the cooling power of the wind. The cooling effect of the wind depends on the wind 

speed and the dry bulb temperature. The heat loss fiom a building is proportional to 

the product of the square root o f  the wind speed and the temperature deviation fiom 

the comfort level of approximately 1   OC. This effect is relatively small in post winter 

seasons and for simplicity, are usually only included in winter models [44]. 



Sorne researchers prefer to use the wind-chi11 factor as a means of representation of 

the wind in their models, since a wind-chill factor is often strongly correlated with 

winter load (71. Others contend that the wind-chi11 factor is only a measure of the 

discomfort level of the wind and temperature and as such, is not a true index for 

gauging the resulting load response (7, 441. High wind-chills however, have the 

psychological effect of causing people to tum up their thermostats. 

3.3.3 Humidity 

A weather variable that greatly influences air conditioning and other related 

cooling loads in summer, is the level of humidity in the atmosphere. The effects of 

high humidity are generally only noticeable when the temperature is quite high, 

usually above room temperature. The humidity effects can be considered in the load 

model by representing it as a tünction of relative humidity, the temperature humidity 

index or the dew point temperature. The most common variable used in the Iiterature 

is the humidity index. 

The temperature humidity index is a measure of the discomfort level or equivalent 

heat stress in sumrner and depends on both the temperature and relative humidity, and 

normally shows greatest correlation with summer load and only influences the load 

above a predetemined cutoff temperature. 

Daytime illumination has a small effect on the load model, compared to the other 

two previously discussed factors. Sunveying the literature shows that in most cases 

this factor is often omitted from most load models. 

Low daytime illumination can cause an increase in daytime lighting load and 

advance the effects of nightfall. thereby altering the evening load pattern. This factor 

is influenced by such weather conditions as cloud cover, dust, fog, haze etc.. . is the 

measure for the level of luminous radiation received at ground level. 



3.4. Residual Load ( 4 4  

This load component occurs in load modeiing and usually accounts for a small 

percentage of total load and results from irregularities in the behavior of the 

consuming public. Abnormal consumer demands, though quite frequent in 

occurrence, are very difficult to model and predict and are not accounted for, in rnost 

load models. 

The common factors of unpredictable load behavior range fiom public response to 

major television events, strikes, storms, disasters, time changes etc. 

3.5 Short-Term Load Forecasting Models [7,9,12,16,50] 

Reviewing short-term load forecasting methods indicates that the most important 

modeling techniques used, can be classified in one of the following categories : 

(1) Multiple linear regression. 

(2) General exponential smoothing, 

(3) Stochastic time series, 

(4) Expert systerns approach, and 

(5) State space model. 

These models are classified on the basis of the name of the underlying 

mathematical technique used to estimate the parameters of the model. The preceding 

classifications are not unique and the one used with one utility is not necessarily 

suitable for another. However, one can combine these models or can use one model to 

initiate another model to predict certain parameters from past history. With unknown 

information about the load. these techniques can be combined to improve the 

accuracy of the forecast. Also. each model possesses distinct advantages and 

disadvantages compared to each other. In the following subsections. the first three 

methods are reviewed, while the last two methods are beyond the scope of this 

research. 



3.5.1 Multiple Linear Regression 144) 

This is the earliest technique of load forecasting methods. Here, load is expressed 

as a function of explanatory weather and non-weather variables that influence the 

load. The influential variables are identified on the basis of correlation analysis with 

load, and their significance is determined through statistical tests such as the False and 

True tests. 

Mathematically the load model using 

where y(t) is the load value at tirne t, 

this approach can be written as: 

(3.1) 

xi (t),. . . ,xn(t) are explanatory variables, r(t) is 

the residual load at time t and ai are the regression parameters relating the load y(t) to 

the explanatory variables. Previous analysis that uses this model treats a; as a crisp 

number 

If the nurnber of obsentations equafs exactly the number of parameters to be 

estimated, then r(t) is forced to zero. Eq. (3.1) becomes 

y(t) = a, + a: xi (t) 

where the asterisk indicates the optimal estimated values of the parameters. 

The multiple linear regression technique has found greatest application as an off- 

line forecasting method and is generally unsuitable for on-line forecasting, as it 

requires many extemal variables that are difficult to introduce into an on-line 

algori thrn 1441. 

These models are relatively simple to apply but require extensive initial analysis to 

identiG the regressors and their place in the model. Also because the relationship 

between the load and weather variable is time specific, this model requires 

continuous re-estimation of its parameters to perform accurately. 



3.5.2 General Exponential Smoothing 17,441 

In this technique the load is modeled using a time dependent fitting function that 

satisfies the relationship: 

f (t) = L f (t-1) (3-3) 

where f(t) is the fitting fiinction at time t, and L is a constant matrix called the 

transition matrix (441. Mathematically the mode1 is expressed as: 

Y (0 = P 0 )  f 0 )  + r(t) (3 -4) 

where y (t) =load at time t, P (t) = coefficient vector at time t and r (t) = residual load 

or noise at time t. 

The pararneter vector is estimated fiom a data window of previous observations 

using least errors square minirnization technique(LES). The estimated pararneter 

vectors are obtained by minimizing the cost function 

where w is called the weighting factor, and (Lw)  is called the smoothing 

constant. The pararneter vector that minimizes the cost function J can be written as : 

BA(N) = F" (N) h (N) (3-6) 

where 

and 

The forecast at a lead time I ,  is then given by : 

yA(N+-0 = f (0 P A N  
and the parameters of the forecasts can be updated using 

P (̂N+ 1 ) = L~P^(N)  + F*' f(O)[y(N+ 1 )-yAO\[)] 



and 

(N+ 1 +O= fT (0 pA(N+ 1 ) (3.1 1)  

This method can be used for both on and off-line forecasting though its tecursive 

nature and generally poor long-range accuracy makes it much more suitable for on- 

line forecasting. The low accuracy encountered for longer lead times stems fiom the 

fact that this technique cannot use related weather information and so this technique 

cannot account for weather related load changes. Simplicity, re-cursiveness and 

economical usage , however, make this technique a very attractive forecasting tool in 

practice. 

3.5.3 Stochastic Time Series 17,441 

In this method the load is modeled as the output of a linear filter dnven by white 

noise. Depending on the charactenstics of the linear filter, different load models can 

be fonnulated. 

The autoregressive and moving average processes are the iwo simplest forms of 

stochastic time series and though neither of these processes is usually individually 

capable of accurately modeling the load, they form the basis for development of more 

complex processes. 

In the autoregressive (AR) process the current value of load is exgressed linearly 

in terms of previous values and a random noise. The order of this process depends 

upon the oldest previous value for which the load is regressed. The moving average 

process on the other hand expresses the load linearly in terms of current and previous 

values of a white noise senes and again the order of the series depends upon the oldest 

previous value. 

The auto-regressive and the moving average processes are usually cornbined to 

give the popular ARMA or auto-regressive moving average process, which has found 

widespread use in the power industry. In the ARMA process, the load at any instant is 

expressed as a linear combination of its past values and a white noise senes. The order 

of this process is specified by the order of the AR and MA series included in its 

composition [ I l .  

Time series used for AR, MA or ARMA models are referred to as stationary 

processes when their means and covariances are stationary with respect to time. So if 



the process k ing  modeled is non-stationary, then it is firstly transformed to a 

stationary senes before being modeled by AR, MA or ARMA process 111. 

Making a non-stationary process into a stationary one is accomplished by the 

method of differencing and the order of a differencing process refers to the number of 

times the process has been differenced before achieving stationarity. Differenced 

processes modeled as AR, MA or ARMA are now called integrated processes and are 

relabeled A N ,  IMA and ARIMA. 

The auto-regressive integrated moving average or ARMA process, like the 

ARMA process is a very popular load modeling technique that produces very accurate 

load forecasts. For longer lead times, however, a seasonal or periodic component must 

be included into these processes. This results in what is known as a seasonal process 

and the abbreviations SARMA and SARIMA are now used (441. 

The lack of weather input into time series models usually limits their forecasting 

ability. By expressing these processes in transfer functions form makes it possible to 

add some weather information. This is usually limited to the single-most influential 

variable, that is temperature, which generally acçounts for most of weather induced 

load (1). 

The popularity of the stochastic time series approach in on-line forecasting stems 

mainly from the level of accuracy available and their ease of on-line implementation. 

The identification process of the time series models is a major disadvantage since the 

process requires extensive analysis of raw load data through the use of range-mean, 

correlation and auto-correlation analysis. 

3.5.4 Qualities of Forecasting Models 

The review of short-term load forecasting methods indicates that depending on the 

forecasting technique employed, many different load models can be developed to 

predict the same load. For these models to be considered good or efficient, however 

their formulation must feature certain basic qualities and their performance must be 

within tolerable limits. 

The literature indicates that some of preferred qualities in a load-forecasting 

algorithm include adaptiveness, recursiveness, economy, robustness and accuracy 

(441. 



Adaptivness 

The parameters of a short-tenn load-forecasting model are usually estimated froni 

a fixed window of data and are only accurate for a specified period of time ahead. As 

the forecast penod elapses and new measurements become available, the algonthm 

should be able to automatically update its data window and recompute its estimates. 

Recursiveness 

As new data such as weather and load measurements become available the 

algorithrn should be able to correct its forecasts and prediction for the next step. 

Computational Economy. 

The pursuit of accuracy can lead to very complicated models that require the use of 

excessive computing facilities. A forecasting algorithrn however, should attempt to be 

computationally escient with regards to execution tirne and care utilization. 

Robustness. 

An algorithrn should be robust to miss-specification and erroneous data. Le. 

reasonable forecasts should be produced even if the mode1 is predicting for conditions 

for which it was not designed, or even if its database is contaminated with bad or 

anomalous data. 

Accuracy 

The performance of a short-term load-forecasting algorithm depends largely upon 

the forecasting lead-time as well as upon such factors as load behavior and model 

type. 

For a model with a 24-hours prediction period errors in the range of 2-3 % are 

considered normal, whereas for models with lead-time of one hour the sarne error is 

considered large. Models with longer lead-time than 24-hours show reduced accuracy 

and for a lead-tirne of one week. accuracies within 10% are to be expected. 

3.6 Load Forecasting Models (441 

In short-term load forecasting. the future load on a power system is produced by 

extrapolating a pre-determined relationship between the load and its influential 

variables, namely time ancilor weather information. Determination of this reiationship 

is a two stage process that requires 

(a) identifiing the relationship between the load and related variables, 



and (b) quantifjring this relationship through the use of a suitable parameters 

estimation technique. 

In order to study the effects of parameter estimation techniques on short-terrn 

load forecasting accuracy , it is necessary to identiw and deveIop suitable load models 

that will allow for the application of these estimation techniques. 

In the next sections, load models are developed for crisp parameters. Tliese 

modek will be used in both summer and winter forecasting modes and as such. where 

applicable, winter and summer load formulations are included. In chapter five, fuzzy 

models are developed for winter and summer loads and the techniques used to 

estimate these fuzzy parameters are discussed in chapter four. In this part of the 

chapter, crisp models are presented and discussed. These three models are developed 

in 1441 for off-line load models. The parameters are assumed to be cnsp. 

Modifications will be carried out, if necessary, on these models for the fuzzy type 

models, as will be seen in subsequent chapters. 

The models will be referred to as A, B and C, respectively. Model A is developed 

on the basis of multiple linear regression, whereas model B is developed on harmonic 

basis, furthemore, mode1 C is a hybrid one that embodies both properties of models 

A and B. These models are developed to forecast for twenty-four hours ahead . 

3.6.1 Model A 

This is a multiple linear regression model that expresses the load at any discrete 

time instant t as a function of a base load and a weather dependent component. The 

base load is assumed to be constant for each discrete time interval. The variable part 

of the load is weather dependant . 

This model will be used for both winter and summer load forecast simulations, and 

since the relationship between load and weather differs significantly over these two 

seasons, a different load formulation will be required in each case. This will result in 

two load models, nameïy a winter model and a summer model. 

These models are based on the assumption that a common daily base load cycle is 

experienced by week days and that a constant but different base load cycle is 

experienced by weekend days, namely Saturday and Sunday. As such, two models are 

required to predict loads over a complete week, i.e. one for predicting weekday loads 



and one for predicting weekend loads. Correlation analysis of load and temperature 

deviations fiom the n o m  indicates that the load to be modeled depends on both 

immediate and previous values of temperature deviations. This correlation however, is 

strongest for irnmediate values of temperature deviations and dies out in 

approximately 72 hours. 

The wind-chill and wind cooling factors also display similar relationship in winter, 

as does the temperature and humidity in summer. The wind-cooling factor however, 

was selected in favor of wind-chi11 factor, as it generally results in smaller prediction 

errors during forecast trial [44]. 

Based on early analyses, initial winter and sumrner models were formulated and 

tested in off line simulation mode. The following two load models formulations were 

selected [44]. 

3.6.1.1 Winter Mode1 

Mathematically, the load at any discrete instant t, where t varies fiorn one to 

twenty-four, can be expressed as: 

Y (t)=a, (t) + ai (t) T (t) + a* (t) T' (t) + a3 (t) T' (t) 

+ a4(t)T(t- 1 ) + a,(t)T(t-2) + a(t)T(t-3) 

+ a,(t) W(t) + ag(t) W(t- 1) + as(t)W(t-2) 

Where 

Y (t) = load at time t, t=1,2.. -24 

T (t) = temperature deviation at time t 

W (t) = wind cooling factor at time t 

a (t) = base load at tirne t, and 

al(t), az(t),. . . .. .,a9(t) are the regression parameters to be estimated at time t. 

The temperature deviation at the instant t, is cakulated as the difference between the 

dry bulb temperature at time t, and the average dry bulb temperature o f  the previous 

twenty weekdays (four weeks) temperature measurements, corresponding to the same 

Where 



Td (t) is the dry bulb temperature at tirne t, in OC 

T, (t) is the average dry bulb temperature at tirne t, 

Ta (t) = [Td(t-24)+ Td (t-48) +. . .+ Td (t-48O)I /2O (3.14) 

It should be noted, that equations (3.13) and (3.14) refer to a database consisting only 

of weekday temperatwe recordings. 

The wind-cooling factor is calculated from 

W (t) = [18- Td (t)] [V (t)] ' 
Where V (t)= wind speed in km/h at time t 

3-6.1.2 The Sumrner Mode1 

The winter equivalent of the load model given by equation (3-12) can be modified 

to become 

Y (t) = h(t)+ ai (1) T (1) +a2 (t) T2(t) + a d t ) ~ ~ ( t )  

+ a(t)T(t-1) + as (t)T(t-2) + as(t)T(t-3) 

+ a,(t) H(t) + as(t) H(t- 1) + a&)H(t-2) 

where 

Y (t) = load at time t 

T (t) = temperature deviation at time t. 

% (t) = base load at time t. 

al(t),a2(t),. . ..,a9(t) are the regression parameters to be estimated at time t. 

The temperature deviation is calculated as for the winter model. 

The humidity factor H(t), that replaces the wind cooiing factor in the winter model, 

is given by 

H(t) = 0.55 Td(t) + 0.2 Tp(t) + 5.05 (3.17) 

where 

Tp(t) = dew point temperature at tirne t, in OC. 

The humidity factor H (t) is set to zero if the dry bulb temperature is less than 

twenty-five degrees Celsius, since at temperatures less than room temperature, the 

humidity effects are negligible. 



Equations (3.12) and (3.16) give the multiple linear regression models for the load 

in winter and sumrner day. As such, it is required to estimate twenty-four parameters 

(24 sets of the parameters) to predict the next day hourly load profile. 

Equations (3.12) and (3.1 6) can be written in compact forrn as: 

Y (t)= fT(t)x(t) 

Where f (t) is a fitting function given by 

in winter, and 

in sumrner. Moreover x(t) is the parameters vector to be estimated and is given by 



In this chapter, the parameter vector of equation (3.21) is assumed to be crisp (vector 

with constant values at time t). In chapter five, this vector will be assumed to be fuzw 

(A vector with certain middle and certain spread). 

The corresponding pararneters X(t) at any given discrete interval are estimated using 

the previous four weeks of weekday data corresponding to the discrete instant. The 

overdetemined system of equations corresponding to the estimates at the instant t, 

will read 

Equation (3.22), which involves crisp pararneters estimation, cm be solved using an 

appropriate estimation technique. Afier estimating the parameter vector X(t), it can 

be substituted into equation (3.12) or (3.16) to obtain the ioad prediction for time i. 

3.6.2 Mode1 B 

The load type of this model is expressed as a fùnction of a constant base load and a 

Fourier harmonic series. It was discovered from studying early load data that there is 

a presence of a weekly load cycle that is characterized by distinct daily periodicities. 

In this rnodel however. the weekly cycle is accounted for, by the use of a daily 

load model, whose parameters are estimated seven times weekly. Since this load does 



not take weather into consideration , a single load model will suffice for both winter 

and surnrner simulations. 

Therefore the load at any time t is 

N 
y (t) = %+ [ai sin (iot)+b, cos (iw t)] 

i=l 

where 

Equation (3.23) is the most suitable forrn to model the load, since it is a Iinear 

equation in the parameters to be estimated. In equation (3.23) : 

y (t)= the Ioad at time t 

N = number of harmonics to be chosen 

O = 211 .' 24 

= constant base load for each day of  the week, and 

a,, b,. i= l .  ..... N are the parameters corresponding to the 

harmonics in the load composition. 

To predict the hourly load profile for any day of the week, an overdetermined 

system of equations is set up using data from the previous four weeks corresponding 

to the day in question. 

Equation (3.23) can be ~vritten as 

y( t )= fT( t )~  

where 



and 

1 

sinu t 

COSU t 

sin NU t 

COS No t 

The overdetermined system of equations can now be written a s  

Having obtained the parameter vector x. then equation (3.23) can be used to forecast 

for the next twenty-four hours. 



3.6.3 Model C 

This model consists of the sum of a tirne-varying base load and a weather 

dependent load. This model is developed to eliminate the disadvantages of the 

previous two models -4 and B. 

Model A has the advantage of being weather responsive, but suffers the 

disadvantages of requiring (a) twenty-four separate parameter estimates in order to 

predict the next day load, and (b) the use of weekday and weekend both with winter 

and summer formulations. 

Model B requires using of a single model formulation and hence it estimats a 

single pararneters vector in order to predict the next day load, however, it suffers the 

disadvantage of being weather insensitive. 

Models A and B are combined to f o m  model C to obtain a computationally 

efficient and weather sensitive model. This new model will eliminate the use of 

separate weekday and weekend models, as is the case with model A. Also by limiting 

the weather input to temperature only, a single load mode1 could be used for both 

winter and summer load forecast simulations. The main disadvantage of model C is its 

assurnption of constant relationship between load and weather for al1 times of the day. 

However, if there is a set of pararneters for every hour, the model becomes 

computationally inemcient. 

Mathematically load model C can be expressed at any discrete time instant as 

N 
y (t) = â,,+ [a, sin (iot) + bi cos (iot)] + c,T(t) 

i= l  

where T(t) is the temperature deviation at time t, and is given by 

T(t)=Td(t)- T m  (3.30) 

where Tc(t) is the average dry bulb temperature for the discrete instant t, calculated 

fiom the previous twenty-eight daily temperature measurement corresponding to the 

discrete instant, i.e. 

Tc(t) = [Td(t-24) +. . . . . .+Td(t-672)]/28 (3.3 1) 



Equation (3.29) can be written in vector form as 

y (t) = fT(t)x (3.32) 

where 

fT(t) =[ 1 sinut cosot . . . s i n k t  cosNat T(t) T(t- 1 ). . . . . .T(t-3)] (3.33) 

and 

xT=[% a: bi . . . . . . . . . a ~  b~ co c 1 . . . ..c3 ] (3.34) 

and the parameters vector X can be estimated as for model B, i.e. fiom the system 

of equations given by: 

The next day forecast can then be done, by substituting for X and the predicted values 

of temperature deviation into equation (3.29). 

3.7 Conclusions 

In this chapter models used for short-term load forecasting are presented. Three 

models are proposed, namely model A, B and C. Model A is a multiple linear 

regression model. From model A two models are derived, the first can be used for 

winter load forecasting while the second can be used for summer load forecasting. 

Model B is a Fourier series model. It is not weather sensitive. Finally mode1 C is a 

combination of the multi-regression model A and the Fourier series model B. In this 

model C the effects of temperature deviations are taken into account. 

In the three models, the parameters to be estimated are assumed to be constants 

during the time interval considered and have crisp values. In chapter five, the fuzzy 

load models used for short tenn load forecasting are presented. The parameters in 

these models are assumed to be fuzzy numbers having certain rniddle and spread 

values. 



Chapter 4 

Static State Estimation 

4.1 Introduction 

The purpose of this chapter is to study the static state estimation problem. The first 

part of this chapter discusses the static estimation problem, when the observations 

available are crisp measurements. Two techniques are discussed for the estimation 

process. The first technique is based on the least error squares (LES) criterion, while the 

second technique is based on the least absoIute value (LAV) criterion. In the second part 

of this chapter, the fuvy estimation problem is discussed. Two problerns are discussed in 

this section. The first problem, the output data are non-fûzy data, while the parameters 

of the explanatory fùnction are fuzzy parameters. In the second problem, the output data 

are fuzzy and the parameters of the explanatory tùnction are fûzzy. 

State estimation is the process of assigning a value to unknown system state variables 

and filtering out erroneous measurements before they enter into the catculation process. 

A familiar criterion in state estimation is the least error squared (LES) which is the 

minimization of the sum of squares of the difference between the estimated and tnie 

(measured) value of the function. Another technique of state estimation is based on 

minimizing the absolute value of the difference between the measured and calculated 

quantities, and it is called the least absolute value (LAV). These techniques require 

excessive computer memory space and long computer time The main advantage of the 

LAV algorithm is its ability to reject the bad data points in the estimation process, i.e. it is 

insensitive to the outliers. A non-iterative method was developed in (64 - 651 to solve the 

least absolute value problem. This method uses the least error squares solution as a 

starting point. The steps of this method are explained within this chapter. 

The main objectives of this chapter are to introduce the static estimation problem and 

the different techniques used to solve it. 



4.2. Static Estimation Problem, Crisp Linear Estimation 163,641 

The static estimation problem can be simply stated as: given the system measurement 

linear equation 

z = H B + v  - - - (4.1) 

Where g is a mx t vector of system measurements (known). 

8 is a nxl  vector of parameters to be estimated (unknown). 

H is a mxn rnatrix describes the mathematical relationship between 

the measurements and the system parameter vector (known) 

and is a mx 1 vector of measurement errors (unknown) to be minimized. 

It is required to estimate the parameter vector 8, which minimizes the error vector y 

in some sense. 

The best parameter estimate e must be chosen to minimize a given cost function. A 

general fonn of the cost function is 

Where 

J ,  (g) is the cost function to minimized. 

P is some number 1 1, which defines the nature of the cost function. 

" - i is the i th measurement. 

Hi is the row of H corresponding to the i th measurement. 

'' i is the residual of the i th measurement; that is, vi = zi - H i  B .  
For p = 2, the cost function is the surn of the squares of  the residuals while for p=l the 

cost fùnction is the sum of the absolute values of the residuals . 



If the number of measurements (m) equals the number of unknown parameter (n). 

then an estimation of @ c m  be obtained as in (4.4) 

For this type of estimation. the estimated parameters vector exactly fits the 

measurements set, i.e. 

4.3 Linear Least Error Squares (LES) Estimation (751 

If the number of rneasurements (m) exceeds the nurnber of system parameters (n), i.e. 

men, then the measurement errors can be filtered out in the estimation process and good 

estimates can be obtained. In the LES, the objective is to minimize the sum of the squares 

of the residuals. 

As mentioned, for p = 2, Equation (4.2) can be rewritten in vector form as 

It should be noted that minimizing the sum of the squares is equivalent to minimizing 

the square root of the sum of the squares. 

Setting the first derivative of Equation (3.7). dl, ( 0 ) / d 0 .  to equal zero, yields 



Where H+ = [HTHr'HT is the lefi pseudo-inverse of H, and 6 - is the optimal or 

best LES estimate of B .  - It should be noted that the second-order partial derivative is 

This matrix is positive definite as long as H is of full-column r a d ,  the rank of H 

equals n. Therefore the value of @ given by Equation (4.10) is unique and minimizes 

4 (el . 
An LES estirnator finds the mean value of a set of measurements (681. The mean 

value is generally accepted to be the best estimate when the set of measurements has a 

Gaussian error distribution. However, for other error distributions the LES will not 

produce the best estimate 1661. The LES estimate is also adversely affected by the 

presence of bad data; most LES estimators use some form of bad data suppression. 

4.4. Weighted Linear Least Error Squares Estimation (WLES) 1751 

In the LES explained in section 4.3 above. if al1 measurements are treated equally, 

then the less accurate measurements will affect the calculation process as much as the 

more accurate measurements. 

As a result, the final set of data obtained from the least error squares estimation 

process will still contain large error due to the influence of bad measurements. By 

introducing a weighting matrix to distinguish the more accurate measurements from the 

less accurate ones, the calculation process can then force the results to coincide with 

more accurate measurements. A sensible way of choosing the weights is to make them 

inversely proportional to the variance of the measurements. This approach means that 

larger weighting is placed on measurements with smaller variance (more accurate) and 

smaller weighting on measurements with larger variance (less accurate). 

The cost function to be minimized, in this case. is given as: 



where 
0; 

is the standard deviation of the i th measuring device. 

,J 
is the variance of the i th measurement. 

w,. is the weight assigned to the i th measurement. 

In vector form, equation (4.13) can be written as 

J ,  - (0) - = (2 - ~ 8 ) ~  W(' - H @ )  (4.1 4) 

Sirnilarly, it can be shown that the weighted l e s t  error squares estimation is 

given by 

4.5 Constrained Least Error Squares Estimation [68l 

The constrained linear least error squares problem is to find the state vector e that 

minimizes cost function 

siibject to satiswing the linear constraints given by 

C g = b  (4.17) 

where C is an C x t1 matnx which represents the relation between @ and 4 .  

d is an t x 1 vector, which represents the constraints measurements. 

-An augmented cost function can be formed by adjoining equation (4.17) the equality 

constraints to equation (4.16) via LaGrange's multiplier A to obtain: 

The cost function of equation (4.18) is a minimum when 



1 ~ , ( ~ ) / ~ ~ = O = - [ - ~ H ~ ; + ~ H ~ H ~ ] + C ~ A  
2 

which gives: 

6 - =[H'H]- ' [H'~-~'A_] (3.19) 

The LaGrange's' multiplier 4 is to be detexmined such that the equality 

constraints of equation (4.17) are satisfied. Pre-multiplying equation (4.19) by C. then 

4 = [c[H'H]-'c~]-'[~H~H]-'H~ - Z-@] (4.20) 

Thus the state 8 can be obtained by substituting equation (4.20) into (14.17) to obtain 

~=[H'H]-'[HT~-c'[c[H~H]-'c~]-'[~HTH]-'H';-~]] - (4.2 1 ) 

I t  can be noticed that if C = O, there are no constraints, then 8 twns out to be the optimal 

estimate for the unconstrained least error squares estimates given by equation (3.9). 

4.6 Recursive Least Error Squares Estimation 175) 

The previous estimators are "batch processing" algorithms, in that al1 measurements 

are processed together to provide the estimate of a constant vector. If a new 

measurement is obtained, then the first way is to append the new data to g and repeat the 

entire process. The second way is to use the prior estimate as the starting point for a 

sequential estimation algorithm that assigns proper relative weighting to the old and new 

data. 

Given , measurements vector corresponding to m 1 measurements, H 1 

rneasurements matrix and WI weighing matris then the resulting estimate 8, are: 

- +v I  L I (4.22) 

4, = [H:w,H]-'H:w, g, (4.23) 

The new measurement g2  with dimension mr, is 
a 

E2 = H A ,  +v,  - -- 



W2 is mpms containing the expected squared emrs  in the new measurement. The cost 

function for al1 (ml +m2) measurements 

can be partitioned as 

where û, -- is the state estimate obtained by using al1 data. 

Taking the derivative of J ( g , .  g, ) and setting it equal to zero provides the 

least-squares estimates ê, -- : 

e, -- =el +L(Z? - H ~ @ ~ )  (4.27) 

where K2 is the recursive weighted-least-squares estimator gain matrix. 

P;' = H:W, fi, - (4.29) 

Equation (4.27) looks like a digital filter, and measurements taken over a period of time 

could update the estimate as they occur. Redefining k as a time index and letting the 

observation vector at time k have r components, the recursive mean-value estimator is 

with 

Note that Kk is a (nxr) gain matrix, which Pk is a (nxn) matrix that represents the 

estimation error at the Kth sampling instant. 



4.7 Nonlinear Least Error Squares Estimation 1681 

In the previous sections, the linear least error squares estimation problem is discussed 

and there is a direct linear relationship between the measuring value and the estimation 

parameters so that the solution is obtained directly without any iteration. If the 

relationship between the measurements and the estimate parameters is nonlinear, the cost 

function needs to be linearized by using first order Taylor series expansion . In this 

section, the solution for the nonlinear parameter estimation problem is to be found using 

the linear least error squares algonthm explained earlier in the previous sections. 

The nonlinear l es t  error squares problem is to estimate the parameter vector which 

minimizes 

The gradient of J ,  (8) is given by: 

This can be wntten as: 



ae, ae2 

Equation (4.35) can be written in compact form as 

VJ,(O) - - = Z H T W ~ ;  

where the mxn matrix H is defined as 

a/. c?f2 - - cf? 
ae, ae, 3% 

W = m x m weighting matrix = 

and A; = rn x 1 difference matris between the measured values and the estimated values. 

To make W ( 0 )  - equal zero. the Newton-Raphson method is implemented. 



The Jacobian matrix of VJ, (8) is calculated by treating [Hl as a constant matris. Thus, 

The procedures of the algorithm for solving the nonlinear state estimation 

problem c m  be stated as follows: 

Step 1. Assume initial guesses for @ . 

S t e ~  2- Compute the measurement vector Ag using these initial guesses. 

Step 3. Calculate the matrix H as well at these guesses. 

Step 4. Solve for A@ using equation (4.39). 

Step 5 -  If A 6  - satisfies a certain specified terminating criterion, terminate the iteration, 

otherwise go to step 6. 

Step 6- Update the parameter vector e as 

8, = g o  + A @  and go to step 2. 

4.8 Properties of Least Error Squares Estimation 163 - 68,751 

The least error squares are the best estimates (maximum likelihood) when the 

measurement errors obey Gaussian or normal distribution and the weighting matrix 

equals to the inverse of the covariance matris. Also, for the estimates where the 

measurements errors does not obey a Gaussian distribution and the number of 

measurements greatly exceeds the number of unknown parameters, the method of least 

error squares yields very good estimates. 

There are many estimation cases where the errors distribution is not a Gaussian 

distribution and the number of measurernents does not greatly exceed the number of 

unknown parameters. In these cases. the least error squares estimation results are 

adversely affected by bad data. These cases have been recognized and addressed by 



several researchers, who have proposed different ways of refining the least error squares 

method in order to make estimation less affected by presence of bad data. 

4.9 Least Absolute Value State Estimation (LAV) 163 - 651 

In contrast to the LES the least absolute value estimation is based on minimizing the 

sum of the absolute value of the residuals. There is a basic difference between the two 

techniques. Using least absolute value the best approximation is determined by 

interpolating a minimum subset of the available measurements. While using the least 

error squares, the best approximation is derived fiom the mean of the available 

measurements when the error statistics are Gaussian. 

The purpose of this section is explain least absolute value approximation theory. Then 

the techniques to obtain LAV state estimation are discussed . After that, an algorithm 

based on LAV is introduced to obtain the best state estimation. 

The cost fùnction in the case of LAV is given by, for p = 1 in equation (4.2) 

As mentioned earlier, the minimum of J ,  (8) corresponds to the best LAV estimate 8, of 

the system parameters. 

Important characteristics of the LAV solution are given by the following theorems: 

Theorem 1. 

If the column rank of the mxn matrix H is k, k n (for maximum rank k = n), then 

there exists a vector @ corresponding to a best approximation that interpolates at least k 

points of the measurement set. 

This theorem States that, if there are m measurements zi, i = 1,2, ..., w and n 

unknowns, then the optimal hyper plane z based on LAV will pass through at least n 

points of the measurements set. This is in contrast to the least square approximation, 

which does not necessarily pass through any of the measurement points of the set g . 



Theorem 2. 

If NI is the number of measurement points above the optimal hyper plane under LAV 

plane and Nz is the number of points below the hyper plane, provided that n+l points do 

not lie on a hyper plane in n-dimension, then 

These two theorems state the interpolation property of the LAV solution. Since the 

LAV solution interpolates data points, it will reject bad data points, provided that none of 

the bad data points are among the points interpolated. Thus, the problem reduces to 

selecting n (n = the number of the parameter variables to be estimated) data points to 

minimize the LAV cost function and to find 4 . The popular rnethod of finding 8 has 

been through linear programming. The formulation of the linear programming problem 

can be canied out as explained in the next subsection. 

4.9.1 Least Absolute Value (LAV) Based on Linear Programming 

In this section, a technique is presented to solve the LAV estimation problem. The 

formulation of this technique is : 

Minimize the cost fùnction of 

Subject to 

and 

Equation (4.43), can be written as 

n 

v,. >z ,  -CH,B,,  i = l ,  ....., m 



and 

Thus, the linear programming problem is to minimize (4.41) subject to satisfying the 

constraints given by equation (4.44) and (4.45). It can be noted from equations (3.44) and 

(4.49, that if any of the constraints is negative, the other will be positive, and Yi must be 

positive in order to obey the linear programming requirements. 

The main steps of this algorithm are : 

Select n points from the set of measurements. 

EvaIuate the cost function; and 

Select new points, which decrease the cost function. When the cost function 

becomes a minimum, the LAV solution has been reached. It has been shown that 

the size of the matrix to be stored and manipulated is [2 (m + n) x n] 

The main disadvantages of linear programming technique are: 

It is an iterative technique, which requires considerable computing 

time. 

It needs a large size of memory to store and manipulate a matnx of 

size 2 (m + n) xn; 

The fiequent inaccessibility of the linear programming algorithm 

within a statistical package. 

The solution obtained may not be unique. 

Some of the more recent algorithrns have been attempted to overcome these difficulties 

and researches continue in this area. 

4.9.2 An LAV Algorithm 163 - 65) 

Given the measurement equation described in equation (4.1)- the following are the 

main steps in this LAV algorithm for unconstrained problem. 

Step 1. Calculate the LES solution, as defined earlier, using the equation 

8 = [H 'H ] - 'H ' ;  



Step 2. Calculate the LES residuals generated fiom this solution as 

Step 3. Calculate the standard deviation of the calculated residuals as 

7 1 
... 

0- = C (v i  - va, ) ' = variance 
nt - n + 1 ,=, 

Step 4. Reject the outliners having residuals greater than the standard 

deviation a , provided the system is observable. 

Step 5.  Recalculate the new LES estimates, using the rest of the 

measurements and calculate the new corresponding residuals for 

these measurements. 

S tep 6. Select the n measurements that correspond to the smallest least 

error squares residual and form the corresponding 2 and ff . 

Step 7. Solve for the least absolute value estimate 8' using 

4.10. Constrained LAV Estimation 1681 

The constrained state estimation problem can be handled by the LAV technique. If 

there are m measurements and f constraints, n + E , the technique will interpolate at 

least n points of the given measurements. The constraints represent good measurements 

so that the residuals of the least error square solution for these constraints wiIl be zero. 

The least absolute value technique must interpolate the C constraints before interpolation 

of n - P of the other measurements. The total number of the interpolated points will 

equal (n - E + I = n) . Thus the method will select directly the l constraints and the n - E 

measurements corresponding to the smallest LS residuals. 

The nurnber of constraints should be less than the number of unknowns otherwise the 

least absolute value will interpolate the n points fiom the constraints only. 



The solution technique may use the method proposed in the pervious section for LS 

parameters estimation with constraints and then proceed in the sarne manner as the LAV 

technique to obtain the least absolute value optimal solution. 

4.1 1 Fuzzy linear Estimation [77,79,80,831 

In this section, a formulation of the hiuy linear estimatior. problem is presented. The 

problem is formulated as a linear programming problem. The objective is to minimize the 

spread of the data points, taking into consideration the type of the membership function 

of the fuuy parameters to satisfy the constraints on each measurement point and to insure 

that the original rnembership is included in the estimated membership. Di fferent models 

are developed for a fùzzy triangular membership and the fuzzy nurnbers of LR-type. The 

fuzzy parameters linear estimation model or fuzsr regression model can be described by 

the following equation 

Y = f( x9 A) = Al xi + A2 xz + a.. +.o. An xn (3.46) 

At any obsentation j; j = 1,2 ..., m, equation (4.46) can be written as 

Yj = f( X, A) = Ai xl + Ar Xzj + +.o.+ & Xnj (4.47) 

In fiizzy regression, the differences between the observed and the estimated values 

are assumed to be due to the inherent ambiguity in the system. Therefore, the above fuzzy 

regression mode1 is built in terms of possibilities. It evaluates al1 observed values as 

possibilities the system must contain. The model in equation (4.46) is named as a 

possibilstic regression model. In this model Y, is the observation at measurement j. This 

output observation may be a non-fuzzy or a fuzzy observation, A,, i=1,2,. . ., n are the 

f u u y  coefficients of the rnodel in the fom of (pi, ci), where pl is the middle and ci is the 

spread, or it may take the f o m  of LR-type as (pi, clL, cR1 ) and xi, is the input to the model 

where i =1, ..., n and j = 1,2,.., m . In this section. three cases for the output Y, are studied: 



4.1 1.1 Non- fuw output ( Yj = mj ) 

In this mode1 the output Y, is a non-fuuy observation, but the mode1 coefficients A, 
L R i=1,2, ..., n are fuzzy parameters either in the f o m  of  Ai = @i, Ci ), or Ai = (pi, ci , c i ). 

i=l, ..., n for the LR-type and the input x, is a non- fwy  input. The rnembership functions 

for each type of  Ai are given in Figures (4.1) and (4.2) 

Pj -Cj PJ Pj +Cj A 

Figure 4.1 Membership Function of the Fuuy  Parameters A, 

The equation that describes this membership can be written mathematically, for the 

triangular fuzzy number, as 

- c 5 a ,$  p .  + c 
PI J J j 

othewise 
L 

M i l e  the membership function of A, of the LR-Type is assumed to be trapezoidal 

function as shown in Figure 3.2 



b 1 b2 b3 b4 x 

Figure 4.2 Trapezoidal Membership Function of Aj 

Note that if b2 = b3, we obtain the tnangular membership. In general the membership 

firnction for the LR-type can be described as 

for s < pJ 

for s 2 p, 

pJ is called the middle of Aj or the mean. cJ1 is the Ieft spread and cJK is the right spread. 

Equation (4.46) can now be written as 

Y , = ( ~ I , C ~ ) X I ~ + ( P L , C ~ ) X ~ ~ + . - - ~  ( Pn.Cn  )Sn,  , j =  1. .... m (4.50) 

for the first type of the fuzzy coefficients. and 
L R 1. R Y j = ( p ~ , c ]  , C I  ) x ~ ) + ( p z . C z  .c?  ) x l i T - . -  

L R 
+ ( Pn. c n  9 cn ) xnj . J = I ,  ..., m 

for the second type of the fuzzy coefficients. 



In the non-hzzy output data regression described by equations (4.50) and (3.5 1 ), the 

parameten are to be found Ai = ( pi, ci ) or Ai = ( pi, ciL, ciR ) that minimize the spread of 

the fuzzy output for al1 data sets. In mathematical form, this can be described as : 

Minimize : 

such that the tùzzy regression model contains al1 observed data in the estimated 

fuvy  numbers resulted from the model. This c m  be expressed mathematically as: 

Note that the first tenn in the right hand side of equations (4.53) and (4.54) represents 

the estimated middle of the fuzzy coefficients, while the second term represents the 

estimated spread of these coefficients and l. is the level of fuzziness and is specified by 

the user. 

For the f u v y  coefficients of the LR-type, the cost function to be minimized is 

Subject to satisfying the following two constraints on each data point 



The problem fomulated in equations (4.52) to (4.54) and that fomulated in equations 

(4.55) to (4.56) are linear optimization problems, which can be solved by linear 

programming using the simplex method. However, if the surn of the absolute value 

deviations in equations (4.52) and (4.57) is to be minimized, subject to satisfying the 

inequality constraints given by equations (4.53), (4.54) and equations (4.56) and (4.57). 

then the problem is least absolute value linear optimization and cm be solved by using 

the software package available in the IMSUSTAT library. 

4.1 1.2 Fuzzy Output 

If the output is a fbzzy number, it may be represented by a fuzzy number in the form 
L R of Y, = (mj , a,) in case of triangular membership function or Y, = (mj , a, , a, ), j=l ,..-, 

m. in case of trapezoidal membership function. For triangular membership function, 

equation (4.47) c m  be written as 

Y,=(m,, a, ) = ( p i ,  ci ) X i j  + (pz, C2 ) X2j f . . . + ( ~ n ,  Cn )xnj 

, j=1,2 ,..., m 

which can be written as 

Equation (4.60) is valid when 

Given the fuzzy output Y, = ( mJ , a, ), it is required to find the fuzzy parameters (pi, ci ), 

i=l, 2,.., n that minimize the cost function 



subject to satisfjring the following constraints on each measurernent point 

If the fiizzy output is of the LR-type, then equation (4.58) can be written as 

Equation (4.66) can be separated into the following equations 

The objective fùnction to be minimized is given (811 as: 

Subject to satisfying the following constraints 

and 



Again the problem formulated in equations (4.63) to (4.65) and that formulated in 

equation (4.70) to (4.72) for LR-type, al1 are linear optimization problems subjected to a 

set of linear constraints. These problems can be solved using the standard linear 

programming using the simplex method. However, if the objective functions are 

minimization of the surn of the absolute value of the deviation, then the least absolute 

value optimization technique based on linear prograrnming is used to solve the problems 

forrnulated above. 

4.1 2 Conclusions 

This chapter discusses static estimation problem formulation. In the first part crisp 

static estimation is discussed. Two techniques are used. The first is based on the least 

error squares (LES) algorithrn, while the second technique is based on the least absolute 

value (LAV) algorithm. 

In the second part, fuuy static estimation is discussed. The objective of the estimation 

probiem is to minirnize the spread of the measurement data (observations) constrained to 

satisQing two constraints on each measurement and to consider the measurement 

membership in the proposed model. 



Chapter 5 

Fuzzy Short-Term Load Modeling 

5.1. Introduction 

Most of the work on off-line short- terrn load models available today assumes that 

the parameters of the model are constant crisp values. This assumption is to some 

extent tme, as long as there are no big changes in weather parameters from day to aay. 

The load power is charactenzed by both uncertainty and ambiguity. 

In this chapter, the load models used in chapter 3 are reformulated to account for 

hzziness of the load charactenstics. In the first section the input is assumed to be 

crisp, while the load model pararneters are expressed as fuzzy numbers having certain 

middle and spreads. Three models are used in this section, namely fiuzzy load modeIs 

A, B and C. The f k z y  load model A is a multiple linear regression model. This model 

takes into account the weather pararneters. The fùzzy load model B is a harmonic 

model, and does not account for the weather pararneters. The fuzzy load mode1 C is a 

hybrid model, that combines models A and B and takes into account the weather 

parameters. 

In the second section the input data are assumed to be fùzzy numbers having 

certain middles and spreads. The parameters of the load model are fuzzy. The hzzy 

numbers used for the fuzzy variables in this chapter are assumed to have a 

syrnmetncal tnangular membership function. 

5.1.1 

The 

0 

Background 

following system is considercd: 

Input Data 4 system 1 0 u t ~ t  

Paramet ers 

If the input data are crisp (non-fuzzy) and the system pararneters A, (i, l,.., n) 



are crisp (non-fuzzy), then the output is also crisp (non-fuzzy) with an error 

deviation between the actual and the estimated or predicted values. (The 

static cases in chapter 4) 

If the input data are cnsp (non-hiuy) and the system parameters are fuzzy 

and follow a membership function (e.g. Triangular Membership Function) 

then the output is fuzzy and follow the same membership as in the system 

parameters (77) (801. 

If the input data are fuzzy and the system parameters are fuzzy, then the 

output is fuzzy. The output will have some resemblence of shape of  the 

rnembership fùnction used. 

The membership functions used in this thesis are triangular rnembenhip 

functions with fuzzy nurnbers having a certain middle and equal Iefi and right 

spreads [77]. 

The objective of the fuzzy parameters estimation is to minirnize the spreads 

of the fuzzy parameters. If spreads of zero are attained, then the output is 

crisp with an error deviation from the actual value. If the spreads are 

minimized, then the output will follow the shape of triangular membership 

function (771 and the output value will be in a range between upper and 

lower values. 

5.2 Crisp Data 

(Yj(t) = mj(t), j =I  ,.., m; t=l, 2 ,..,..., 24) 

The input data of the load model are assumed to be crisp values, while the load 

parameters are fuzzy. 

5.2.1 Multiple Fuzzy Linear Regression model 

The load, in this model. can be expressed mathematically as: 

where Y,(t) is the value of the load power at time t. 

8, is the fuzzy base load having a triangular membership with 



a middle p, and spread c,, as s h o w  in Figure 5.  la. 

Ai are the fuuy coefficients having a triangular membenhip 

with a middle pi and spread c, as show in Figure 5. I b. 

Po - Co P o  P o  + Co Go 

Figure (5.1 a) Membership Function of A,, 

Pi Ci Pi PI+ Ci Ai 

Figure (5.1 b) Membership Function of Al 



Equation (5.1) can be rewritten as: 

As shown in chapter four, for the output data described by equation (5.2). the 

coefficients &@,, c,) and Ai (pi, ci ) are to be found such that the spread of the ~ U Z Z ~  

output is minimized for al1 data sets. In mathematical form, this can be described as: 

Minimize: 

where t e  [O, t~ 1, tF is the number of days for which data are taken at the hour in 

question. The fuzzy regression model in equation (5.3) contains al1 observed data in 

the estimated füzzy numbers resulting from the modeI. This c m  be expressed 

mathematically as: 

n n 
yj(t) r [p. + pi xij (t) 1- ( l - i b  ) [CO + C ci xij(t) ] ;  JI^ ,*-Y 

and 

Note that the first term of the right hand side of equations (5.3) and (5.5) represents 

the estimated middle of the fuzzy coefficients, while the second term represents the 

estimated spread of these coefficients. 1. is the Level of fuzziness and is specified by 

the user. As Â increases, the fuzziness of the output increases. In the above equations 

m is the nurnber of observations and n is the number of fuzzy parameters used in the 

model. 

In the following subsections two multiple fuuy linear regression models are 

developed. The first model can be used to predict the load dunng the winter season, 

while the second model can be used to predict the load dunng the summer season. 

The only difference between the two models is that the winter model considers the 



wind-cooling factor as an explanatory variable, while the summer model considers 

the humidity factor as an explanatory variable. 

5.2.1.1 Fuzzy Model A (Winter Model ) 

The fiizzy winter model, equation (3.12), can be wrinen in W y  form as: 

Xi(t) = A + Al Tj(t) + 82 T\(t) + ~ 3 ~ \ ( t )  + &Tj(t-1 ) + AsTj(t-2) 

+ &Tj(t-3) + 8 7  Wj(t) + Ag Wj(t1 ) + A9 Wj(t-2) ; 1 .  (5.6) 

Where Yj(t) is the load power j; j=l, ..., rn at time t; t=1,2,. . ., 24 and is assumed to be 

given as non-fuuy data. T,(t) is the jth temperature deviation f?om nominal at time t 

and is given by equation (3.13). W,(t) is the wind cooling factor at time t and is given 

by equation (3.15). and &, Ai,.  . ., A9 are load model fuzzy coefficients having 

middles po, pi,.. ., pg and spreads c,, CI  ,..., cg . 
Equation (5.6) can be written as: 

YjO) = @O, CO) + (pl, c,)T,(t) + (pz. cd  T:(O + @3, c3) T3j(t) 

+ (p& c~)Tj(t-l) + @5, C5 )Tj(t-2) + @6, c6)Tj(t-3) + @7, c7)Wj(t) 

+ (pg, cg)wj(t-l) + ($9, Q)Wj(t-2) ; j=l,. . ., m (5.7) 

In fùzzy linear regression, the spread of the fuuy coefficients are to be 

minimized. This results in an objective function which can be expressed 

mathematically as: 

m 

J = ( { CO + [ c 1 T, (t) + c~T', (t) + c3 T ~ ,  (1) + c1 T, (t- 1 )+ csTj (t-2) + c6Tj (t-3) 
t j = i  

+ c,Wj (t) + C ~ W ,  (t- 1 )  + cgwj(t-2) 1 1 (5 .8)  

where t~ [O, t~ 1, t~ is the number of days for which data are taken at the hour in 

question. Subject to satisfying the two inequality constraints on each load power 

given as: 

yj(t) 2 PO +P I  Tj(t) + pz TZj(t) + pj T3,(t) + p4 Tj(t-l) + p5 Tj(t-2) 

+ P6 T,(t-3) +p7 Wj(t) + pg Wj(t-l ) + pg W,(t-2) - (1 -X)(C, + C 1 Tj (1) 

Cz T', (1) f C3 T~, (t) + CJ T, (t-1) Cs Tj (t-2) + C6 T, (1-3) 

+ ~7 Wj (t) +cg Wj(t-1 ) + c9Wj(t-2) ) , J = l ,  2,. . ., m (5.9) 



The optimization problem formulated in equations (5.8 - 5.10) is linear and can be 

solved using linear programming based on simplex method available in the 

IMSL/STAT library . 

Having identified the middle and spread of each coefficient, then the fuzzy load 

model for the winter season can be obtained using equation (5.6) or equation (5.7). 

5.2.1.2 Fuzzy Model A (Summer Model) 

The summer fuzzy model for the short-term load forecasting can be written as: 

x(t) = + Ai T(t) + A2 ~ ' ( t )  + & ~ ) ( t )  + & T(t- 1 ) +As T(t-2) 

+A6 T(t-3) + A7 H(t) + As H(t-1) + A9 H(t-2) (5.1 1) 

w here 

X(t) is the summer load power at time t. 

T(t) is the temperature deviation at time t given by equation (3.13) 

&,.Al,. . .,A9 are the fuzzy load coefficients having certain middle 

pot pi ,..., p9 and certain spread co, cl,. . ., c~ at time t. 

H(t) is the temperature humidity factor given by equation (3.17) 

The summer load model stated in equation (5.1 1 ) takes into account the temperature 

deviation and the temperature humidity factor for each hour and at three and two 

hours before. 

Equation (5.1 1 ) can be rewritten as : 
3 

&(t) = (PO, CO) + @i, C I )  Tj(t) + (PI, CZ) ~ ' j ( t )  + ( ~ 3 ,  c,) T j(t) 

+ (PJ, cd) Tj(t-l) + (~51 c5) Tj(t-2) + ( ~ 6 ,  ~ 6 )  Tj(t-3) 

+ @;, C, )Hj(t) +(ps, cti )Hj(t-l ) +(p9, c9 )Hj(t-2) 



In fuzzy linear regression, the parameters A, = (pi, ci) , i= 1 ,.., . . . ,9 are to be found 

that minimize the spread of the fuzzy output for al1 data set. This can be expressed 

mathematically as: 

Minirnize 

where t E [O, t~ 1, t~ is the number of days for which data are taken at hour in question. 

Subject to satisfying the following inequality constraints at j ; j=l, ..., m 

The problem formulated in equations (5.13) to (5.15) is linear and can be solved by 

the linear programming optimization package available in the IMSL/STAT library. 

Having obtained the fuzzy parameters A, = (p,. c , )  , i=l ,. . ., 9, then the load can be 

predicted for the next twenty four hours using equation (5.1 1). 



5.2.2 Fuzzy Load Mode1 B 

This is a harmonic decomposition model and does not account for weather 

conditions. It does not account for temperature deviation, wind cooling factor nor 

humidity factor. Thus this model can be used for both winter and summer simulations. 

The fuzzy load at any time t therefore, can be written as: 

Y(t) = & + C (Ai sin iwt + Bi COS io t  ) 
i = l  

w here 

Y(t) is the load power at time t and it is assumed to have crisp values. 

L, Ai and Bi are fuzzy parameters having certain middles and spreads, 

and are given as: As= (p,, c,), Al= (pl, ci), and Bi-= (ai, bi) 

The model descnbed in equation (5.16) c m  be written as: 

n 
Y(t) = @,, c,) + [@,, cl)  sin i o t  + (a,. b,) cos iwt] 

i = 1 

Note that the middles and the spreads are constants and are estimated seven times 

weekly. 

The objective is to find the fuzzy paranieters that minimize the spread of the load 

power . Mathematically, this can be written as : 

Minimize: 

where 

xij(t) = (sin iot ), j = l  ..... m; i=l, .... n 

m, n are the number of obsenf aiions and harmonies chosen in the 

model, respective1 y. 

t~ [O, t ~ ] ,  t~ is the nurnber of days for which data are taken at the hour in 

question. 



Subject to satis-g the inequality constraints given by: 

n n 
yj(t) 2 [po + C bi sin iot +aicos iot)]  - (1 -h)[c0 + (ci sin i~t+bicos iot), (5.19) 

i = 1 i = l  

n n 

yj(t) l [po + sin iot +aicos iot)], +(l-h)[c, + C (cisin iot+bicos iat), (5.20) 
i = l  i = l  

The optimization problem formulated in equations (5.18) to (5.20) is a linear 

optimization problem and can be solved using the simplex method of linear 

Having obtained the fùzzy load parameters, the load for the next twenty-four hours 

can be predicted using equation (5.16) 

5.2.3 Fuzzy Joad Mode1 Cm 

This is a fùzzy hybrid model that takes into account weather dependent 

components. The base load in the model is a time-varying function and takes the forrn 

of Fourier's coefficients. This model can be considered as a combination of fuzzy 

load model A and fuzzy load model B. Here the weather input is limited only to 

temperature deviation , and the model is used for both winter and summer load 

forecast simulations. 

The fuzzy load model in this case, c m  be wntten mathematically as: 

n 
Y;(t) = {Ao + [Ai sin i o t  + Bi COS iot ]), {GT,(t) + CiT,(t-1) + Ç-T,(t-2) 

i = I  

where 

&Ai and 8, are the weather independent hzzy parameters having 

certain middles and certain spreads. 

Co, Ci, Çz and Ç3 are the temperature dependent fuzzy parameters. 

The terms in the first brace in equation (5.21) can be considered as the base load 

which depends only on time, while the terms in the second brace are the temperature 

dependent load terms. 



Equation (5.2 1 ) can be written as: 

where in equation (5.22), the first letter in the parameters brackets indicates the 

middle of that pararneter and the second letter indicates the spread of this pararneter. 

In fùzzy regression, the fuzzy model parameters are to be found to minimize the 

spread of the output. In mathematical form, this can be expressed as: 

J=I c { co + 2 [ai xij(t) + Pi~ij(t)I 

where t~ [O, t~ 1, CF 1s the number of days for which data are taken at the hour in 

question. 

Subject to satisQing the following hvo constraints on the output so that the fuuy  

regression model could contain al1 the obsenred data j, j= l , . .  ., m in the estimated 

fuzzy numbers resulting From the model. This can be expressed mathernatically as: 



The problern fomulated in equation (5.23) to (5.25) is a linear optimization problem 

and c m  be solved using linear programming based on the simplex method explained 

in chapter 4. Having identified the h i u y  model parameters, the load for the next 

twenty-four hours can be predicted using equation (5.22) 

5.3 Fuzzy Data: Fuay Power Load 

In section 5.2 the load power data is assumed to be non-fuuy, while the 

parameters of the load power are fuuy. Different linear optimization problems were 

derived with different load models. In this section, the load data are assurned to be 

h z y  power values having certain middle and certain spread Xj(t) = [mj(t),aj(t)]. 

where mj(t) is the middle of the load power at the time t in question during the 

observation j, and aj(t) is the spread of the load power at time t and observation j. 

Using this formulation of fuzzy number means that a tnangular rnembership function 

is assumed, as shown in Figure (5.la) and (5. lb). 

53.1 Multiple Fuzzy Linear Regression, Mode1 A 

The fuzzy model for the load power can be expressed mathematically as : 

which can be rewritten as: 

or, it c m  be separated as: 



Equation (5.27b) is only valid when' : 

The problem tums out to be: Given the fuzzy load power at time t 

Yj(t) = [mj(t),aj(t)], it is required to find the fuzzy parameters A, and Ai that 

minimize the cost function given by: 

where te [O, t~ 1, t~ is the number of days for which data are taken at the hour in 

question. 

Subject to satisQing the following constraints on each measurement point: 

Given two fùzzy numbers Ml =(m, ,a , ,p ,),, and M2 =(m2 ,OC ,p 2)LR in terms 

of LR functions [78] that follow triangular membership function. 

where 

ml and ml are the centers of the rnembership function 

ai and al are left side spreads 

pi and are right side spreads 

Then 

where 

a, = a, f a2 

Ps =Pi + pl 

The center of the sum is equal to the surn of  the centers and each of  the spreads 

of  the sum are the sum of  the respective spreads. 



i = l  i = l  

The problem formulated in equations (5.30) to (5.32) is a linear optimization 

problem. This problem can be solved using linear programming. In the next 

subsections two multiple linear regression models are discussed, one for the winter 

and one for the summer . 

5.3.1.1 Fuzzy Winter Mode1 

Two factors affect this model. The first is the temperature deviation. The more 

temperature deviation the more load power is needed. While the second factor is the 

wind-cooling factor, as the wind cooling factor increases, the load power increases. 

The load power data in this model is assumed to be a fuzzy power unlike the load 

aJ(t) = Co + ciTj(t) +- Cz TL,(() + C'T;(~) + crTJ(t- 1 ) + c5Tj(t-2) + c6Tj(t-3) 

+ ~ 7  Wj(t) + c8WJ(t- I ) 7 ~~)N '~( t -2 )  , J=I,.- .,m (5.3 5 )  

Given the fuzzy load power (m,(t). a,(t)) at any time t, it is required to determine 

the middle and the spread of each parameter that minimize the following cost 

function : 



where te [O, t~ ], t~ is the number of days for which data are tâken at the hour in 

question. 

Subject to satisfLing the following hvo constraints at each measurement point. 

m,(t) - ( 1 4 )  aj(t) > [ (RHS of equation 5.34) - ( RHS of equation 5-35)], 

j=l ,. - .,rn (5.37) 

m,(t) + (1-h) aj(t) <[ (RHS of equation 5.34) + ( RHS of equation 5-35)], 

j=l,.. .,m (5.38) 

M S  in the above hvo equations stands for the right hand side of. 

The problem formulated in equations (5 -36) to (5.38) is one of linear optimization. 

This problem can be solved using standard linear programming . 

Having identified the fuzzy parameters of the fuzzy winter model, the load in a 

winter day can be predicted. The middle of the load can be predicted at any hour t 

using equation (5.34), while the spread can bc predicted using equation (5.35). 

5.3.1.2 Fuzzy Summer Model 

The load in this model is a function of thc temperature deviaiion and the humidity 

factor. The load power as well as the load model parameters are assumed to be fuzzy 

numbers. Mathernaticatly. this can bc expressed as: 

Xj(t) = (mj(t), aj(t)) 

=A + Ai Tj(t) + A2 T',(I) + Ar ~ : ' , ( t )  + a TJ(t-1 ) 

+Ar Tj(t-2) &Ab Tl((-3) Ai Hj(t) + As HJ(t-1 ) + A9 HJ(t-2) 

* j= 1 ,..., m (5.39) 

where 



X,(t) is the fiiuv load power i; i= 1, ..., m, at time t. This power 

has a middle m,(t) and a spread aj (t) 

Bo, AI,. - .,& are the fbzq load parameters at time t with 

certain middle p ,,.., ps and certain spread CO, ci ,..-, cg. 

Tj(t) is the temperature deviation at time t , j= 1,. . . . m. 

Hj(t) is the humidity factor given by equation (3.17) 

Equation (5.39') can be written as: 

U t )  = (mj(t), aj(t)) 

= @O, CO) + @ I V  c d  T(t) + (PZ, cd  f Z(t) + @ 3 9  c d  T3(t) 

+ @& c4) T(t-1) + @5, ~ 5 )  T(t-2) + ( ~ 6 9  ~ 6 )  T(t-3) 

+ (PT, C7 )H(t) + (p8, Cs )H(t-l) + (ps, c9 )H(t-2) (5.40) 

provided that the memberships for the fuzzy numbers are triangular memberships. 

Equation (5.40) can be rewritten as two equations: 

m,(t) = p, + pi T,(t) +pz~j2(t)  + p3~,3(r) + paT,(t- l)+pJ,(t-2) 

+p6Tj(t-3)+p7Hj(t)+p8Hj(t- 1 ) + psH,(t-2) , j=l, ..., m (5.41) 

a,(t) = c,  + cJ,(t) +czTj2(t) + c , ~ , ~ ( t )  + cJ,(t- 1 )+csT,(t-2) 

+c6T,(t-3)+c7Hj(t)+c8Hj(t- 1 ) + cgH,(t-2) , j=l,. . .,m (5 -42) 

In the fuzzy optimization linear problem, the mode1 fuvy  parameters are to be 

found to minimize the spread of the fuzzy load power. 

Mathematically, this can be expressed as: 

Minimize: 

where t~ [O, t~ 1, t~ is the number of days for which data are taken at the hour in 

question. 

Subject to satisQing the following constraints: 

m,(t) - (1  -A) aj(t) 2 [ (RHS of equation 5-41) - ( RHS of equation 5.42)]. 

, j=l,. . .,m (5 -44) 

m,(t) + ( 1 4 )  a,(t) I [ (RHS of equation 5.41) + ( RHS of equation 5.42)], 

, j=l,-- .,m (5 -45) 



The optimization problem fomulated in equations (5.43) to (5.45) is one of linear 

optimization and c m  be solved using linear prograrnrning . 

Having obtained the hzzy load parameters, then equation (5.39) can be used to 

predict the fuzzy load power at any hour t in question. 

5.3.2 Fuzzy Load Mode1 B 

This mode1 does not account for weather conditions in the load and it can be 

expressed as: 

n 
X,(t)= (mj(t), aj(t)) =& + C [ (Ai sin io t  +Bi COS iot) 1, 

i = I  

The only difference between equation (5.17) and (5.46) is the load power Y,(t) at 

tirne t. In (5.17) the load power is assumed to be a crisp value, while in (5.46) it ia 

assumed to be a füuy  value having a middle m,(t) and a spread aj(t). Equation (5.46) 

can be written as : 

n 
(m,(t), aj(t)) = @,, c,) + 1 [@i. ci) sin iot + (bi, Bi ) COS iot], 

i = !  

which c m  be split into 

n 
mj(t) = p, + [@, sin iot + b, cos iot], 

i = l  

n 

a,(t) = c, + [ c, sin iot + p, cos iwtl, 

The load fuzzy parameters are to be found that minimize the spread of the fuzzy 

load power. This can be expressed rnatliematicaliy as: 

where t e [O, t~ 1, t~ is the number of days for which data are taken at the hour in 

question. 



Subject to satisSing the following two constraints as: 

mj(t) - (1 -A) a,(t) 2 [RHS of equation 5.48 - RHS of equation 5.491; 

. j=l, ..., m (5.51) 

mj(t) + (1 4) a,(t) 5 [RHS of equation 5.48 + RHS of equation 5.491; 

, j=I,.. ., rn ( 5  -52)  

The problem formulated in equations (5.50) to (5.52) is one of linear optimization 

that cm be solved using linear prograrnrning . 

Having identified the rniddle and the spread of fuzzy parameters, then the 

hannonic load model described in equation (5.47) c m  be used to predict the load at 

any hour t. Note that the load power obtained in this case is independent of the 

weather conditions, and depends only on the hour in question. The next model, model 

C, combines the fuuy load model A and the fùzzy load mode1 B. This model takes 

weather conditions into account. 

5.3.3 Fuzzy Load Model C 

The fuzzy load model A derived earlier has the advantage of being weather 

responsive, the fuzzy coefficients of this model depend on the weather conditions. 

These conditions include temperature deviation and cooling factor. 

Mode1 B is weather insensitive. The fuuy coefficients of this model depend only 

on the time in question. 

In this section, the two models A and B are combined into one fùzzy model. The 

resulting model is weather sensitive. This fuuy mode1 is suitable for al1 weekdays 

and can be used for both winter and summer load forecast simulations. Its main 

disadvantage is the assumption that the relation between load and weather is constant 

throughout the day. 

The f w y  model for the load in this case can be expressed mathernatically as: 

n 
X,(t)= (m,(t), a,(t)) = (8, + (Ai sin iot +Bi COS i ~ t ) } ~  + (Ç,T,(t)+Çi Tj(t-1 ) 

i = l  



where m,(t), aj(t) is the middle and spread of load power j, j=l,. . .,m at time t. 

&, A,, and B, are the weather independent hizzy parameters with 

certain middles and spreads. 

Co, Ci, G, and G are the temperature dependent fbzzy parameters 

with certain middles and spreads. 

The LHS of equation (5.53) is the fuzzy load power. The tems  in the first bracket in 

the RHS of equation (5.53) can be considered as the fuzzy base load, and it depends 

only on tirne, while the second bracket is the temperature dependent fuuy load terms. 

Equation (5.53) c m  be written as 

For simplicity let : 

xi(t) = sin t 

yi(t) = COS iw t 

In equation (5.54), the first letter in al1 small brackets of the equations indicates the 

middle of the pararneter, while the second letter indicates the spread of that pararneter. 

A triangular membership is used for each parameter . 

In the fuzzy model developed in equation (5.54), the tuzzy model parameters are to 

be found to minimize the spread of the output. Mathematically, the hzzy linear 

optimization problem can be expressed as: 

Minimize: 



where t s  [O, t~ 1, t~ is the number of days for which data are taken at the hour in 

question. 

Subject to satisfjmg the following two constraints for each measurement point given 

as: 

The problem formulated in equations (5.56) 

and can be solved by linear programming . 

, j=l, ..., m 

to (5.58) is one of linear op 

Having obtained the middle and spread of each fuzzy parameters, then the load 

power at any hour in question can be calculated using equation (5.54) 

5.4 Conclusions 

In this chapter a new formulation for fuzzy short-term load forecasting models is 

presented, where in the first part of the chapter, the load power is considered given as 

a crisp (non-fuzzy) data while the load mode1 parameters are fuzzy having certain 

middles and spreads. The problern turns out to be one of linear optimization . 

In the second part of the chapter. the load power is considered to be a fuzzy power 

data having certain middles and spreads. Three different fuzzy models A, B, and C 

are developed and new fuzzy equations are obtained. The resulting optimization 

problem is linear and can be solved using linear prograrnming . 



Chapter 6 

Load Forecasting Computational Results 

Static State Estimation 
6.1 Introduction 

In the previous chapters different models are developed for short-term load 

forecasting dunng the summer and winter seasons. In chapter three the models are 

derived on the basis that the load powers are cnsp in nature, while in chapter five the 

models are developed on the basis o f  hzzy  load powers. For sake o f  comparison, the 

data available fiom Nova Scotia Power Inc. are used to forecast the load power in the 

crisp case as well as in the fuzzy case. In the first part of this chapter, the results 

obtained for the crisp load power data for the different load rnodels developed in 

chapter three are shown. In the second part, the results obtained for the fûzzy load 

powers for the different fuuy  load models developed in chapter five are shown. A 

comparison is done at the end of the chapter for the two cases. 

6.2 Description of the Data 

Nova Scotia Power Inc. supplied the data used in this study for the years 1994 and 

1995 hourly load power, while the Atlantic Climate Center of Environment Canada 

supplied the hourly weather conditions for the same two years that were extracted 

fiom Environrnent Canada's Archives. These data include houriy dry buIb 

temperatures, the wind speed and the percentage humidity recorded at Sheanvater 

Airport at Halifas. A standard record format has been adopted for climatological data. 

Each record consists of station identification. date (year, rnonth and day) and element 

nurnber followed by the data repeated 24 times. The element number identifies each 

data type and implies the units and decimal position. The element numbers are 

described in Table (6.1) as they appeared in the data from Enviroment Canada. If 

there are missing data for a certain hour, denoted by -999, the average value of the 

hour before and hour after are used to replace this missing point. 



Table 6.1 The Elemens and Their Units 

Element 
L 

78 1 0.1degC 

Units 

Dv Bulb Temperature 

76 l km/h 

6.3 Off-Line Simulation (Static Load Forecasting Estimation) 

Description 

Wind Speed i 
I 

In this section, the three off-line load models for crisp load power data that were 

developed in chapter three have been used to predict the next day hourly load profile 

for selected penods for winter and summer of 1994. 

For each load model, the least errors square (LES) and least absolute value (LAV) 

algonthms are used to estimate the load model parameters. The results for each load 

model parameters are given in table format, while the final forecasts for LES and 

LAV together with the actual load are given in the f o m  of curves. Furthemore the 

estimated pararneters for each model are used to predict the load 24 hours ahead for 

the same time period. 

The following abbreviations are used in this section 

z = Actual recorded load. 

z ~ s  = Load forecast made from least errors square. 

ZLAV = Load forecasted using the least absolute value algorithm. 

The percentage errors corresponding to the forecasted loads are given by: 

EL = [ ( z - z ~ s ) / z ] x  100 

and 

E ~ V = [ ( Z - Z L A V ) / Z ]  x 100 

Humidity 
1 

6.4 Model A 

80 

Model A has been descnbed in chapter three for crisp load powers. It is a multiple 

linear regression model whose pararneters are constants dunng the hour considered. A 

parameter estimate from the available data is obtained for every hour. 

percent 



An excessive volume of computations is associated with a single twenty-four hours 

load prediction. The days are chosen for the prediction process in a random way . The 

model is applied to different days in the same period of time (same lime) for the same 

season. The parameters estimated for each of these days are not reported because the 

obtained predictions for more days are essentially the same. 

Two approaches are applied. The first approach estimates a given parameter for 

every hour in question in the day. The days are chosen randomly. The second 

approach assumes the model parameters to be constants during the whole day studied. 

The estimated parameters in the two approaches are used to predict the load for one 

day ahead of a working day and a weekend day in summer and winter. 

6.4.1 Model Parameters Estimation for Every Hour in a 

Summer Weekdag (24 sets) : 

Tables (6.2) and (6.3) give the estimated parameters for a summer 

weekday using the LES and LAV algorithms. While Table 6.4 gives the estimated 

load and percentage errors in the estimates using the least errors squares (LES) and 

least absolute value (LAV) algor i ths.  Figure (6.1) gives a comparison between 

actual and estimated loads, while Figure (6.2) gives the errors in the estimated powers 

compared to actual load. From these tables and figures the following remarks are 

noted : 

LES estimates the actual load value with a maximum error of 9.1 % 

(underestimated) at hour 24, and a minimum error of O. 1 % 

(overestimated) at hour 1 .  Most error values are below 4% (1 9 hours). 

LAV estimates the actual Ioad value with a maximum error of 10.6% 

(underestimated) at hour 23 and a minimum error of 0% at hours 3, 10, 

18,22. 

Since many error values are less then 4% for both algonthrns, the 

estimated power values during the day (even with wide variations in 

the weather data) are still acceptable. If the redundancy in the estimated 

parameters is increased, the errors in the LAV estimates will be 

decreased. 





Table (6.3 ) Estimated parameters for sunimer weekday using LAV 



Table (6.4) Estimated ioad and percentage error for surnmer weekday, 
24 parameters sets, Model A 



/ - - * - - LES estimate 

_. . ; - -P - LAV estimate 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 

Daily hours 

Figure (6.1) Estimated load for a summer 
weekday using 24 parameters sets, Model A 



Daily hours 

Figure (6.2) Estimated load error for a summer weekday using 
24 parameters sets, Model A 

The estimated parameters during the 24 hours are used to predict the load 24-hour 

ahead. Table 6.5 gives the predicted load power 24- hours ahead using the estimated 

load parameters given in Tables 6.2 and 6.3. Figure 6.3 gives the predicted load for 24 

hours ahead. Figure 6.4 shows the error in the predicted load. Exarnining Table 6.5, 

Figure 6.3 and Figure 6.4 reveals the following : 

LES predicts the load 24 hours ahead with a maximum error of 10.7% 

(overpredited) at hour 9 and a minimum error of 0% at hour 4. Most error 

values are below 4% (15 hours). 



LAV predicts the load 24 hours ahead with a maximum error of 39.5% 

(overpredicted) at hour 7 and a minimum error of 0.1 % (overpredicted) at 

hour 21. There are several hours where the errors are over 3%. LAV needs 

more data to decrease errors' values. 

Since the levels of error in LES prediction are less than LAV prediction 

for the load, LES predicted value represents the load better than LAV 

prediction. The errors' levels in LAV prediction can be reduced if the 

redundancy in the estimated parameters is increased. 

Table (6.5) Predicted load and percentage error for sumrner weekday, 
24 parameters sets, Mode1 A 

I 

Daily hour 

1 .O 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11 .O 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 
18.0 
19.0 
20.0 
21 .O 
22.0 
23.0 
24.0 

% LES 
emr 
-0.9 

2 
2.2 

O 
1.1 

-0.7 
3.5 

-2.4 
-1 0.7 
-2.4 
3.5 
6.5 1 

% LAV 1 
error 
14.3 
1.4 

-7.5 
1 

2.7 
-0.1 

-39.5 
-0.6 
-3.9 

5 
4.2 
5.7 

LAV 
f rediction 

583.9 
61 3.9 
630.7 

564 
556.8 
570.2 
828.8 
665.6 
814.1 
855.3 
938.4 
961.5 

944 
854.4 , 

Actual 
load(M W) 

681 
622.7 
586.5 
569.7 
572.3 

LES 
Prediction 

686.8 
610 

573.8 
569.5 
566.2 

7.7 
10.4 
-0.1 
5.1 
8.7 
6.2 
8.9 

2 
1.7 

-5.5 
-0.9 
0.2 

9.8 
17.2 
-0.3 
8.1 
14 

3.5 
5.4 
7.2 

-0.1 
-3.6 
4.4 
1.6 

1016 1 1018 ( 1020 
1003 / 951.2 1 921.7 

569.7 1 573.6 

101 1 
1 044 
1022 

956.6 
922.9 
957.2 
958.8 
874.5 

594.2 
661.5 
783.8 
900.1 
979.6 
1020 

573.2 
677.6 
867.8 
921.5 
945.7 
953.6 

923.2 j 869.7 

1047 ) 966.5 
1 032 1 924.3 , 

979 
931.6 
937.2 
907.4 
1010 

1007 
967.4 

887 
923.9 
992.1 

967.4 1 91 6.4 
872.7 1 860.1 
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Figure (6.3) Predicted load for a summer weekday 
using 24 parameters sets, Model A 



Daily hours 

Figure (6.4) Predicted load error for a summer 
weekday using 24 parameters sets, Model A 



6.4.2 Estimation of Constant Model Parameters for a Surnmer 

Weekday (1 set) : 

In the second approach the load parameters are assumed to be 

constants dunng the day in question where there is only one group of parameters 

instead of 21 groups. Table (6.7) gives the estimated load and percentage error for a 

summer weekday. Figures (6.5) and (6.6) show the estimated load and the error in the 

estimated load . Exarnining these tables and figures reveals the following: 

LES estimates the load with a maximum error of 10.2% 

(overestimated) at hour 22 and a minimum error of 0.1% 

(overestimated) at hour 16. Most error values are below 4% (17 

hours). 

LAV estimates the load with a maximum error of 17% 

(overestimated) at hour 7 and a minimum error of 0% at hours 8 and 

14. Error values under 3% are at 14 hours. 

Both LES and LAV estimations for the load are showing range of 

errors as the 24 parameter sets. The estimations deviate fiom the 

actual load with acceptable range of errors. 

The performance of two approaches for a summer weekday as explained, are ako 

examined for a summer weekend. 
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Figure (6.5) Estimated load for a summer weekday 
using one parameters set, Model A 



Daily hours 
Figure (6.6) Estimated load error for a summer weekday 

using 
one parameters set, Model A 



6.4.3 Model Parameters Estimation for Every Hour in a 

Summer Weekend Day (24 parameters sets) : 

Tables (6.8) and (6.9) give the estimated parameters using LES and LAV 

techniques for a summer weekend day. Table (6.10) together with Figures (6.7) and 

(6.8) give the estimated load and and the percentage emors in this estimate using the 

sets of parameters fiom Tables (6.8) and (6.9). Exarnining these tables and figures 

reveals the following : 

LES estimates the load for a weekend day with a maximum error of 

4.4% (overestimated) at hour 22 and a minimum error of 0.1% 

(overestimated) at hour 2. So, the estimated load values are good due 

to small error values. 

LAV estimated load value has a maximum error of 10.2% 

(underestimated) at hour 24 and a minimum error of 0% at houre 2 

and 12. Since rnost of the rest of errors' values are under 4% (either 

overestimated or underestimated), the estimated load value is good. 

The parameters sets are used to predict a load one week ahead. Table (6.1 1) and 

Figures (6.9) and (6.10) give the predicted load for a weekend ahead and the 

percentage error in this prediction. Exarnining these tables and figures reveals the 

following:: 

The maximum error in LES predicted load is 7.34% (overpredicted) 

at hour 20, while the minimum error is 0.1% (underpredicted) at hour 

18. Most of the rest of the errors are less than 4% (overpredicted or 

underpredicted) in value. 

LAV predicts the load with a maximum error of 19.34% 

(overpredicted) at hour 24 and a minimum error of 0.31% 

(overpredicted) at hour 15. Most of the rest of the errors are less than 

4% (overpredicted or underpredicted) in value. 

Due to the small values of errors, both LES and LAV give an 

acceptable load predictions. 
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Table (6.10) Estimated load and percentage error for summer weekend 
day, 24 parameters sets, Mode1 A 

Actual l load(M W) 1 LAV l % LES / O/O LAV j 
Estimate LES Estirnate error 1 error j 



0.0 4.0 8.0 12.0 16.0 20.0 24.0 

Daily hours 

Figure (6.7) Estimated load for a surnmer weekend 
day using 24 parameters sets, Model A 
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j. LES estimate enors 
--- 

/ O LAV estimate errors 

Daily hou- 
Figure (6.8) Estimated load error for a summer weekend day using 24 

parameters sets, Model A 



Table (6.1 1 )  Predicted load and percentage error for surnmer weekend 
day, 24 parameters sets, Mode1 A 

DaiIy hour 

1 .O 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11 .O 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 
18.0 
19.0 
20.0 
21 .O 
22.0 
23.0 
24.0 

Actual 
load(MW) 

71 6.8 
637.7 
598.5 
573.7 

558 
550.7 
560.7 
585.7 
659.2 
762.4 
843.9 

875 
881 -2 
863.2 
831 -4 
805.3 
795.6 

814 
808 

766.4 
748.2 
823.3 
801 -8 
744.5 

1 
LES 

Prediction 
736.1 
655.6 

603 
588.9 
565.6 
571.1 
587.5 
587.5 
645.5 

750 
833.5 
861.6 
867.2 
864.8 
847.1 
808.6 
799.3 
81 3.2 
826.2 
822.6 
791.5 
800.2 
807.6 
753.9 

LAV 
Prediction 

761.7 
643 

61 8.7 
581.3 

555 
551.4 

569 
576.4 
649.5 
748.2 
829.4 
861.8 
867.2 

847 
834.1 
81 3.2 
804.2 
816.7 
903.6 
833.5 
759.2 
793.2 
840.1 
888.5 

% LES 
error 
-2.7 

-2.81 
-0.75 
-2.66 
-1.36 
-3.7 

4.78 
-0.37 
2.08 
1.63 
1.23 
1.53 
1.59 

-0.19 
-1.89 
-0.42 
-4.46 

O. 1 
-2.26 
-7.34 
-5.78 
2.81 

-0.72 
-1.62 

% LAV 
emr 

-6.27 
-0.84 
-3.38 
-1.32 
0.54 

-0.1 2 
-1 -49 
1.58 
1.48 
1.86 
1.72 
1.51 
1.58 
1.87 

-0.32 
-0.98 
-1 .O8 
-0.33 

-1 1.83 
-8.76 
-1.47 
3.66 

-4.78 
-1 9.34 
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Figure (6.9) Predicted load for a surnmer weekend day 
using 24 pararneters sets, Model A 
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O LAV error 
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Figure (6.10) Predicted load error for a summer weekend day 
using 24 parameters sets, Model A 



6.4.4 Estimation of Constant Model Parameters for a Summer 

Weekend Day (1 set) : 

Table (6.12) gives the estimated parameters for a surnmer weekend day, 

while Table (6.13) and Figures (6.1 1 - 6.12) give the estimated load and percentage 

errors in this estimate using one set of parameters given in Table (6.12) for LES and 

LAV techniques. Examining these tables and figures reveals the following: 

Maximum error in LES load estimation is 15% (underestimated) at 

hour 8, while the minimum emor is 0.2% (overestimated) at hour 12. 

Most of  the rest of the errors (12 hours) are less than 4% 

(overestimated or underestimated) in vaIue. 

Maximum error in LAV ioad estimation is 15% (underestimated) at 

hour 8, while the minimum error is O. 1 % (overestimated) at hour 12. 

Most o f  the rest of the errors (12 hours) are less than 4% 

(overest irnated or underestimated) in value. 

Better estimated values can be obtained by using more data to reduce 

the errors. 

The one set of parameters are used to predict the load one week ahead. Table (6.14) 

and Figures (6.13-6.14) give the obtained results. Exarnining these tables and figures 

reveals the following: 

Maximum error in LES load prediction is 9.4% (underpredicted) at 

hour 1. whi le the minimum error is O. 1 % (overpredicted) at hour 12. 

Most of the rest of the errors (15 hours) are less than 4% 

(overpredicted or underpredicied). 

Maximum error in LA\' load prediction is 9.5% (overpredicted) at 

hour 9, while the minimum error is O. 1% (overpredicted) at hour 3. 

For both tehniqucs LES and LAV, the predicted load can be 

reprcsented better by using more data to reduce the errors. 



Table (6.12) Estimated parameters for a weekend day 

using LES and LAV algorithm 

Parameter 1 LES estimate 1 LAV estimate 



Table (6.13) Estimated load and percentage error for summer weekend 
day, one parameters set, Mode1 A 

Daily hour 

1 .O 
2.0 
3.0 
4.0 
5.0 
6.0 
7 .O 
8.0 
9.0 

10.0 
11.0 
12.0 

Actual 
load(MW) 

758.1 
683.3 
640.8 
614.2 
597.3 
586.8 
590.3 
601.3 
667.3 
764.1 
848.8 
885.7 

LES 
Estimate 

687.1 
672.4 
678.1 
664.1 
634.3 
553.4 
590.9 
691.6 
714.5 
753.2 
842.3 
886.4 

LAV 
Estirnate 

687.1 
677.8 
673.8 
655.6 
623.9 

531 
585.9 
691.6 
730.7 

759 
854.3 
886.5 

% LES 
errer 
9.4 
1.6 

-5.8 
-8.1 
-6.2 
5.7 

-0.1 
-1 5 
-7.1 
1 -4 
0.8 

-0.1 

% LAV 
error 
9.4 
0.8 

-5.2 
-6.7 
-4.5 
-9.5 
0.7 
15 

9.5 
0.7 

-0.7 
-0.1 
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Daily hou= 

Figure (6.1 1) Estimated load for a sumrner weekend day 
using one parameters set, Model A 



Daily hours 

Figure (6.12) Estimated load error for a summer weekend 
day using one parameters set, Model A 



Table (6.14) Predicted load and percentage error for surnrner weekend 
day, one parameters set, Mode1 A 

' Daily hour 

1 .O 
2.0 
3.0 
4.0 
5.0 
6.0 , 

Actual 
load(M W) 

758.1 
683.3 
640.8 
640.8 
640.8 
640.8 , 

LES 
Prediction 

687.1 
672 -4 
678.1 
678.1 
678.1 
678.1 

% LES 
error 
9.4 
1.6 

-5.8 
-5.8 
-5.8 
-5.8 

' LAV 
f rediction 

687.1 
677.8 
673.8 
673.8 
673.8 
673.8 

7.0 1 640.8 i 678.1 

' % LAV 
error 
9.4 
0.8 

-5.2 
-5.2 
-5.2 
-5.2 

-5.8 673.8 -5.2 
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Figure (6.1 3) Predicted ioad for a summer weekend 
day using one parameters set, Model A 



Daily hours 

Figure (6.14) Predicted load error for a summer weekend day 
using one parameters set, Model A 



6.4.5. General Remarks For Summer Model A 

The two approaches LES and LAV give acceptable predicted load 

values. There are errors involved between actual and estimated load, actual and 

predicted load. To reduce errors more quality data has to be used. The scope here is to 

show how LES and LAV algorithms are applied as predicting tools. Estimated 

parameters values obtained using 24 sets or 1 set of parameters are producing 

estimated and predicted values deviating with errors fiom actual value. The results 

obtained using 24 sets or 1 set contain error values. Thus, by using one set of 

parameters will be more economical with less effort and computing time. These 

algorithms are to be compared to the fuzzy algorithm in the section on results and 

technique. 

6.4.6 Winter Predictions 

Appendix 3 and 4 give the results obtained for winter weekday and 

winter weekend using mode1 A. The same arguments for summer results can be 

said for winter results. The estimated and predicted load values deviate from the 

actual load values. Tables (6.6a) and (6.6b) give a brief summary for estimated and 

predicted errors. The errors are to be reduced by using more quality data, so that 

the predicted values can resenible and predict the data as accurate as possible. The 

usage of either 24 sets or 1 set of parameters give high error values in the predicted 

load. Thus, using one set of parameters will be more economical and time saving 



Table (6.6a) Estimated and predicted enors for a winter weekday 

I Algorithm l LES i LAV 

I 1 

Type of day 1 Weekday 

Parameters set 

Weekday 

Estimated load maximum error 

24 I 1 
I 

1 

Estimated load minimum error 1 -0.1 

5 .O4 

Predicted load maximum error 

Table (6.6b) Estimated and predicted errors for a winter weekend day 

I 
I 

24 

O 

Predicted load minimum error 

1 

5.2 

-6.48 

1 

I 1 

-11.63 1 10.41 1 -17.99 

0.07 

Algorithm 

1 

1 Parameters set 24 1 1 24 1 

-8.64 

-0.02 

Type of day 

-6.1 

O 

0.4 1 

LES LAV 

Weekend 

Estimated load maximum error 

-0.4 1 

Weekend 

1 

Estimated load minimum error 

0.03 

-5.62 

Predicted load maximum error 

-0.15 

I 1 

-1 5.22 

25.8 1 

Predicted load minimum error 1 -0.4 1 

-0.09 

-8.86 

-27.12 

-0.09 

-1 1.6 

0.0 1 

-1.5 1 0.2 

0.04 

26.26 23.13 



It is a weather insensitive model, that depends only on the hour (tirne) 

considered. The mode1 proposed in chapter 3 is used to predict the load power for 24- 

hours ahead for one working day and one weekend day in summer and winter . The 

model is applied to the data h m  Nova Scotia power and Environment Canada 

Weather. Hamonics included are from the lowest number to thirteen. Nine hannonics 

are used in the static estimation process since it was found to produce the lowest 

error. 

6.5.1 Sumrner Weekday 

Table (6.15) gives the estimated load parameters for a summer 

weekday, while Table (6.16) and Figures (6.15-6.16) give the estimated load for a 

summer weekday and the percentage error in this estimate using the LES and LAV 

algorithms. Examining these tables and figures reveals the following : 

LES estimates the load with a maximum error of 26.2% (overestimated) at 

hour 2 and a minimum error of 2.5% (underestimated) at hour 1 8. 

LAV estimates the load with a maximum error of 87,4% (overestimated) at 

hour 3 and a minimum emor of 0% at hour 24. 

Estimated load error values of LAV fiom hour 4 to hour 22 arc very small 

compared to the estimated load error values of LES (for example ai hour 4, 

LAV error is 0.05% while LES error is 20.5%, and at hour 20, LAV error is 

0.06% while LES error is 14.8%). LAV algonthrn gives a better load 

estimate than LES estimate for the hours 4 to 22. The large error values for 

some hours in LAV estimation are caused by bad data. More data can help 

screen these bad points and reduce error values. 



Table (6.15) Load parameters for a summer weekday, Mode1 B 

1 Parameter LES estimate f LAV estimate 
f 

The parameters estimated for model B are used to predict the load 24-hours ahead for 

the same weekday. dunng the same season. Table 6.17 and Figures (6.17-6.18) show 

the predicted load and the error in this prediction. Examining the table and figures 

reveals the following: 

LES predicts the load with errors larger than 14% in 11 instances. The 

range of errors is from 27.54% (overpredicted) at hour 2 as the 

highest to O. t 1 %  (underpredicted) at hour 12 as the lowest. 



Table (6.16) Estimated load and percentage error for summer weekday, 
Mode1 B 

I 
I Hour 1 Acmd / LES / LAV 1 O !  LAV 1 



Daily hours 

Figure (6.15) Estimated load for a summer weekday , 
Model B 



Daily hours 

Figure (6.1 6) Estimated load error for a summer weekday, 
Model 6 



LAV predicts the load with errors less than 0.6% in 19 instances. The 

errors range is fiom the highest 20.98% (overpredicted) to the lowest 

0.08% (overpredicted). 

LAV error values are less than LES emor values in every hour except 

hour 23 where LES error is 16.46% (underpredicted) and LAV error 

is 18.16% (overpredicted). This indicates that LAV gives in this case 

better representation than LES. 

6.5.2 Summer Weekend Day 

The same mode1 is used to forecast a weekend day load, Table (6.18) 

and Figures (6.19 - 6.20) give the estimated load and the percentage error in this 

estimate. Examining the table and figures reveals the following: 

LES estimates the load with a maximum error of 1 7.78% 

(overestimated) at hour 2 and minimum error of 0% at hourl2. 

LAV estimates the load with a maximum error of 13.88% 

(overestimated) at hour 2 and a minimum error of 0.05% 

(overestimated) at hour 17. 

LAV estimated load errors areless with a wide magin than the LES 

estimated load errors in ail the cases except for hour 1. 

Since LAV estimated errors are less than 0.22% in 19 instances, LAV 

gives better estimates than LES. 

Table (6.19) and Figures (6.21 - 6.22) give the predicted load for a weekend day one 

week ahead. Examining the table and figures reveals the following: 

LES predicted load error has a maximum of 20.07% (overpredicted) 

at hour 2 and a minimum of 0.47% (undrpredicted) at hour 12. 

LAV predicts the load with a maximum error of 2.3% (underpredicted) 

at hour 2 and a minimum error of 0% at hours 0,3. 

Since al1 LAV predicted load errors are Iess than LES predicted load 

errors, LAV gives load predictions better than LES load prediction. 



Table (6.17) Predicted load and percentage error for summer weekday, 
Mode1 B 

Hour Achial 
toad(MW) 

LAV 
Prediction 

LES 
Prediction 

% LES 
Error 

% LAV 1 
Error 1 



Daily hours 
Figure (6.1 7 )  Predicted load for a sumrner 

weekdav. Model B 



I LES errors 
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O LAV errors 

Daily hours 

Figure (6.1 8) Predicted load error for a summer weekday, 
Model B 



Table (6.18) Estimated load and percentage error for summer weekend 
day, Mode1 B 

Hour 

1 
2 

Actual 
load(M W) 

758.1 
683.3 

% LAV 
Error 

-1 3 
-1 3.88 

% LES 
Error 

-12.98 
-1 7.78 

LES 
Estimate 

856.5 
804.8 

' LAV 
Estimate 

856.5 
778.77 



. ,  -   chi al- load 
- - * - - LES estimate . 

- * - LAV estimate 

8 12 16 

Daily hours 

Figure (6.19) Estimated load for a summer 
weekend day, Model B 



Daily hours 

Figure (6.20) Estimated load error for a summer weekend day, 
Model B 



Table (6.19) Predicted load and percentage error for s u m e r  weekend day, 
Mode1 B 

Hour 1 Actual LES 1 LAV 1 % LES / % LAV 1 

1 
7 - 
3 

load(MW) / Prediction 
950.4 1089.5 
874.5 1 1050.04 
838.7 / 979.43 

Error 
O 

2.3 
O 

Prediction 1 Error 
950.4 
894.7 

839 

14.64 
-20.07 
-1 6.78 



- LES ~ r e d i c t h  :- 

1' 1 LAV-Predi&n 

Figure (6.21) Predicted load for a summer 
weekend day, Model B 



Daily hours 

Figure (6.22) Predicted load error for a summer weekend day, 
Mode1 B 



6.5.3 General Remarks For Summer Model B 

The two approaches give acceptable load predictions. Model B is not 

weather responsive. More quality data have to be used to reduce the error values. The 

LES and LAV tools present predicted load values for both weekday and weekend 

days. These algonthms are to be compared to the fuzzy algorithm in results and 

technique later on in this thesis. 

6.5.4 Winter Predictions 

Appendix 3 and 4 give the results for a weekday and a weekend day dunng 

the winter season. Model B is a non-sensitive weather model. This feature is reflected 

upon the results. They show deviations in estimated and predicted load values fiom 

the actual load. The error levels range fiom high to low values. The sarne argument 

applies for either weekday or weekend day. 

6.6 Model C 

Mode1 C is a combination of a hannonic, weather insensitive model, and a 

multiple linear regression model which accounts for weather parameters. In other 

words it's a hybrid of models A and B. The parameters of model C are estimated 

for a weekday and a weekend day during the summer season and winter season. 

Table (6.21) and Figures (6.23 - 6.24) give the estimated load and the percentage 

errors in the estimate during this sumrner weekday. Furthemore, Table (6.22) and 

Figures (6.25 - 6.26) give predicted load for a sumrner weekday 24 hours ahead. 

Examining these tables and figures reveals the following: 

From Table (6.20), parameter A, has the largest value, since it 

represents the basic load while the rest of the pararneters represent the 

variations in the load fiom other factors. A, is 1020.16 at LES 

estimation and 1023.68 at LAV estimation. 

The results given in Table (6.21), estimated load, indicate that the 

pararneters estimates for model C are accurate, since the errors in the 

estimated load power values are very small, for both LES and LAV 



techniques. LES estimatecl load error goes fiom the highest of 0.36% 

(underestirnated) at hour 4, to the lowest of 0% at hour 18, while 

LAV estimated load error goes from the highest of 1.86% 

(overestimated) at hou 22, to the lowest of 0.01 % (overestimated) at 

hour 16. 

From Figure (6.24), it is noted that the maximum error obtained at 

hour 22 by the LAV algorithm is 1.86% (overestimated) and LES 

algorithrn is 0.28% (overestimated) which is small and acceptable. 

Both Table (6.22), predicted load for 24-hours ahead and Figure 

(6.27), giving a cornparison between the predicted and actual load, 

show that the load is being overpredicted. LES predicted load error 

has the highest value of 22.45% (overpredicted) at hour 4 and the 

lowest value of 0.51% (underpredicted) at h o u  3. LAV predicted 

load error has the highest value of 24.17% (overpredicted) at hour 4 

and the lowest value of 0.7% (underpredicted) at how 24. 

6.6.1 General Remarks For Summer Model C 

Model C considers al1 days of the week and does not distinguish 

between weekday and weekend days. The two approaches using mode1 C give good 

load predictions. Over prediction takes place more than under prediction. So the loads 

are over predicted. More data have to be used to reduce error values. LES and LAV 

algonthms are applied as predicting tools, and later in this thesis these algorithms are 

to be compared to the fuzzy algorithm in results and technique. 



Table (6.20) Load parameters for a summer or winter day, 
Mode1 C 

Parameter 1 LES estimate 1 LAV estimate 1 



Table (6.2 1 ) Estimated load and percentage error for summer day, 
Mode1 C 

, 
Hour Actual LES LAV % LES 

load(M W) Estimate Estimate Error 1 Error 



O 4 8 12 16 20 24 

Daily hours 

Figure (6.23) Estimated load for a surnmer day, 
Model C 



Daily hours 

Figure (6.24) Estimated load error for a summer day, Model C 



Table (6.22) Predicted load and percentage error for summer day, 
Model C 

1 

Actua! 1 LES 1 LAV 1 o/, LES 1 
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Figure (6.25) Predicted load for a summer day, 
Model C 



Daily hours 

Figure (6.26) Predicted load error for a summer day, Model C 



6.6.2 Winter Predictions 

Appendix 3 and 4 give the prediction results for a winter day. 

Exarnining these results, the same remarks can be reached as those for the sumrner 

day. Table (P3.13) shows the estimated load results to be very good. LES estimated 

load has a maximum error of 0.4396 (overestimated) at hour 3, and a minimum of 0% 

at hour 13. While LAV estirnated load has a maximum error of 2.29% (overestimated) 

at hour 3, and a minimum error of 0% at hours 1 t ,l6,19 and 21. The level of errors 

are small and acceptable. Table (P3.14) exhibits the predicted load results. LES 

predicted load has a maximum error of 13.01% (underpredicted) at hour 1. and a 

minimum of 1.12% (overpredicted) at hout 15. LAV predicted load has a maximum 

of 12.97% (underpredicted) at hour 2, and a minimum of 0.3% (ovrepredicted) at hour 

15. In general, since model C accounts for weather and time, it exhibits better results. 

6.7 Concluding Remarks 

In this chapter, the LES and LAV parameter estimation algorithms are used for 

static estimation for the parameters of different load models. Three models are used 

narnely A, B and C. These models are used to predict load power for the next 24- 

hours in a weekday and a weekend ahead for a weekend day. 11 has been found that 

model A gives acceptable ioad predictions. 

Model A possesses the advantage of being weather sensitive, but suffers the 

following: (1) It needs 24 scparate parameters sets in order to predict the load 24 

hours ahead as accurate as possible. and this needs more computing time. it is also 

found that one set of parameters gi\-es acceptable results, (2) The use of separate 

models for weekday and weekend day both with summer and winter formulations. 

Model B does not account for weather effccts. but is a function of the hour (Time) 

considered and produces acceptable results and takes less computing time. I t  can only 

be used for a case where the weathcr variations are small during the da-. 

Model C is the most suitable model. since i t  takes into account both tirne and 

weather during sumrner and winter seasons. lt eliminates the use of separate models 

for both weekday and weekend day. 



Chapter 7 

Load Forecasting Computational Results 

Fuzzy Linear Regression 

7.1 Introductioa 

In chapter 6 the short-term load forecasting problem is discussed, and the LES and 

LAV parameter estimation algonthms are used to estimate the load model parameters. 

The error in the estimates is calculated for both techniques. The three models, proposed 

earlier in chapter 3, are used in that chapter, to present the load in different days for 

different seasons. In this chapter, the f u v y  load models developed in Chapter 5 are 

tested. The fuzzy parameters of these rnodels are estimated using the past history data for 

summer weekday and weekend days as well as for winter weekday and weekend days. 

Then these models are used to predict the fùzzy load power for 24 hours ahead, in both 

summer and winter seasons. The results are given in the fonn of Tables and Figures for 

the estimated and predicted loads. 

7.2 Fuzzy Load Model A 

The developed fuzzy model A for summer in Chapter 5 is tested in this section. First, 

the ioad power data are assumed to be crisp values, and the load parameters are fuzzy. 

Then, the load power data and the load parameters are both assumed to be fuzzy. It is 

found that nine fuzzy parameters are enough to model this type of load. 

7.2.1 Load Parameters For A Summer Weekday 

Table (7.1) gives the estimated fuzzy parameters for three cases. In the first 

case. the load power has crisp values. The other two cases, the load power is fuzzy data 

and it is assumed that load power has deviated by 5% and 20% fiom the onginal case to 

simulate the fuzziness in these values. Examining this table reveals the following: 



Table (7. 1) Fu- parameter for a summer weekday, Mode1 A 

The only fuzzy parameter is A,, which conforms with the assumption that the load 

power has a cnsp value, and the spreads of the paramrters are to be minimized. 

It can be noted that three parameters are adequate to represent the load for the cnsp 

case, six parameters for the 5% load deviation case and £ive parameters for 20% load 

deviation case, since the output of the linear optimization problem produces only 

these parameters. 

The middle of some parameters (A l )  are not zeros at 5% load deviation and are zeros 

for 20 % load deviation and vice versa (&has a middle value at 20% load deviation 

but the middle is zero at 5% load deviation). 

Parameters 

& 

AI 

A7 

A3 

&I 

As 

8 6  

Crisp load 

As 

8 9  

Middle 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Spread 

335.69 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

5 % load Deviation 

0.0 

1 .O3 

Middle 

0.0 

8.5 

0.0 

0.0 

3.75 

0.579 

0.0 

20 % load Deviation 
Spread 

288.4 

0.0 

O. O 

0.0 

0.0 

0.0 

0.0 

Middle 

0.0 

0.0 

0.0 

0.00807 

3 .229 

0.6 12 

0.0 

0.0 

0.0 

Spread 

391.91 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

21.83 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 



+ Arnong the values of the pararneters, the pararneter is the largest one. This 

parameter represents the base load. The extra power component that cornes fiom 

other pararneters represents the variation in the load power due to the variation in 

weather conditions. 

7.2.2 Load Estimation For A Summer Weekday 

Using the estimated k z y  pararneters mentioned in Table (7.1), Figures (7.1 

- 7.3) give the actual and the estimated load during the same period of time for the three 

load power conditions. Examining these figures reveals the following: 

+ The estimated fiizzy load contains the given load values within the allowable range 

specified by spreads in the parameters. 

The estimation results are good since the given load has never gone outside the range 

given by the spreads of the fuzzy parameters. 

+ The problem involving crisp values for load power at any hour, mentioned in chapter 

6, is now solved, by transforming the load at the hour into a soft load, and a range of 

lower load to upper load is allowed. 

+ As the load deviation percentage increases, the spread between the upper load and the 

lower load increases. 

7.2.3 Load Prediction For A Summer Weekday 

The estimated fuzzy parameters are used to predict the load 24-hours ahead 

for a summer working day. Figures (7.4-7.6) give the results obtained for the three fuuy 

ranges for this day. Examining these Figures reveals the following: 

+ The estimated pararneters produce good predictions for the load at every hour in 

question. 

+ The given load is within the range produced by the estimated pararneter spreads. 
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Figure (7.1) Estimated load for a summer weekday, 
crisr, load. Model A 
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Figure (7.2) Estimated load for a summer weekday, 
(5 % load deviationl. Model A 
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Figure (7.3) Estimated load for a summer weekday, 
(20 O h  load deviation), Model A 



Daily hours 
Figure (7.4) Predicted load for a summer 

weekday, crisp load, Model A 
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Figure (7.5) Predicted load for a surnmer weekday, 
(5% load deviation), Model A 
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Figure (7.6) Predicted load for a summer weekday, 
(20% load deviation), Model A 



+ The actual load deviates a very small amount from these ranges. These deviations can 

be neglected for such type of forecasting. 

+ At a given hour, the upper and lower values c m  be considered as constraints on the 

load at this hour. 

Table (7. 2) Fuzzy parameters for a summer weekend day, Mode1 A 

Parameters 

Bo 

Al 

Ac 

A3 

& 

A j 

Crisp load 5 % load Deviation 
Middle 

0.0 

0.0 

0.0 

0.0069 

2.779 

I 

Middle 

0.0 

0.0 

0.0 

0.0072 

2.89 1 

0.383 

20 % load Deviation 
Spread 

247.328 

0.0 

0.0 

0.0 

0.0 

Spread 

283.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Middle 

0.0 

0.0 

0.0 

0.008 1 

3 .23 

0.6 12 0.307 0.0 
I 

Spread 

391 -9 

0.0 

0.0 

0.0 

0.0 

0.0 



7.2.4 Load Estimation For A Summer Weekend Day 

The proposed h z z y  mode1 is used as well to predict the load on a summer 

weekend day. The fûzzy parameters are estirnated first. Table (7.2) gives the estimated 

hzzy parameters, while Figures (7.7-7.9) depict the results for the load deviation ranges. 

Esarnining the table and figures reveals the following: 

Among the pararneters, &, is the only parameter showing fuzziness for the crisp and 

the other two cases, since it has spread values. The objective is to minimize the 

spread of each fiizzy parameter. 

Five fùzzy pararneters are adequate to mode1 this type of Ioad for this specific day 

and season. 

The actual load is in the range given by the estimated spread and does not cross the 

border of the estimated load. 

The actual load lies between the upper and lower fuzzy ranges of the ioads. 

7.2.5 Load Prediction For A Summer Weekend Dap 

The estimated fuzzy parameters are used to predict the load ahead in a 

weekend day. The results obtained cire gi~ven in Figures (7.10 - 7.12). Examining these 

figures reveals the following: 

A good load prediction is obtaincd for a specified weekend day. 

+ -4 range is allowed for the load pouver to vary at every specified hour, and this range 

increases as the load cieviation increases. 

+ The actual load never crosses ihc linlits determined by the spreads of the load 

parameterî.These limits arc an uppcr load and a lower load. 

4 At a given hour, the upper and iowcr load powers can be considered as constraints on 

the actual load at this hour. 

+ The actual powers. 24 hours ahcad. in al1 cuwes do not violate the upper and lower 

constraints power ioad. 

In conclusion, the proposed fuzzy load mode1 A, is adequate to present the load for 

the sumrner weekday and weekend days. 
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Figure (7.7) Estimated load for a summer weekend 
day, crisp load, Model A 
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Figure (7.8) Estimated load for a summer weekend 
day, (5% load deviation), Model A 
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Figure (7.9) Estimated load for a summer weekend 
day, (20% load deviation), Model A 
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Figure (7.10) Predicted load for a sumrner weekend day, 
crisp load, Model A 
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Figure (7.1 1) Predicted load for a summer weekend 
day, (5% load deviation), Model A 
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Figure (7.12) Predicted load for a summer weekend 
day, (20% load deviation), Model A 



7.2.6 Load Estimation And Prediction For Winter Weekday And 

Winter Weekend Day 

The results for a winter weekday and a winter weekend are given in 

appendices 1 and 2. The sarne concluding remarks can be reached for the data Iisted. 

7.3 F u z q  Load Model B 

This model is a harrnonic model and it is not sesitive to the weather parameters, 

(temperature, wind speed. hurnidity .... etc). Nine parameters are chosen for the sine teml 

and nine for the cosine term beside to the base load parameter. The load deviation for this 

load model takes a value of O?$ (crisp load power). 5%. 10% and 20 % to simulate the 

fuzziness of the load power. 

7.3.1 Load Parameters For Model B 

Table (7.3) sives the variation of the fuzzy parameters at percentage load 

deviations. Examining this table reveals the follouin_e:. 

Among the load parameters. only parameters A,. the base load parameter. and Ag are 

fuzzy . 

4 Parameter As has a zero value at the middle and a different spread value in al1 cases 

considered. For (e-g. 20% toad dcviation case): 

The upper parameter \ d u c  = nliddlc - spread 

= O - 20.196 = 30.196 

The lower parameter value = middlc - spread 

= O -20.196=20.196 

The membership for Ac is a linc on rhe s-axis centered at the origin with a zero 

middle value and a spread of (20.196). 

The spread increases with the increase of the degree of fuzziness: 



Table (7.3) Fuzzy parameters for a surnmer day load, Model B 

Paramet er Crisp load 1 5% load deviation 1 10% load deviation 1 20% load deviation 

& 

Ai 

At 

A: 

PLI 

As 

& 

Ai 

C 

Middle 

874.32 

1.594 

28.95 

0.0 

45.81 

0.0 

23.40 

13.5 

Middle 

875.99 

1.402 

28.544 
-- 

0.355 

45.502 

0.0 

23.336 

Spread 

258.7 

0.0 

0.0 

0.0 

0.0 

14.43 

0.0 

0.0 

Spread 

299.306 

0.0 

0.0 

O F  

0.0 

18.5504 

0.0 

Middle 

879.498 

0. O 

26.8084 

1.71 89 

44.6506 

0.00.0 

24.105 1 

12.826 

Spread 

340.848 

0.0 

0.0 

0 0  

0.0 

19.41 1 

0.0 

Middle 

886.038 

0.0 

23.770 

3.4214 

42.304 

0.00.0 

24.9042 

Spread 

424.722 

0.0 

0.0 

0.0 

0.0 

20.196 

0.0 

7.3645 0.0 0.0 0.0 10.7958 



For 0% load deviation, the spread is 14.43, 

5% load deviation, the spread is 18.5504, 

10% load deviation, the spread is 19.4 1 1,  and 

20% load deviation, the spread is 20.196 

This indicates the fûzziness effect in load's nature, where increasing the degree 

of fuzziness, the spread increases, then the range between upper and lower limits 

increases. 

For A, (e-g. 20% load deviation): 

The upper parameter value = 886.038 + 424.722 = 13 10.76 

The lower parameter value = 886.038 - 424.722 = 461 -3 16 

Predicted base load will fa11 in the range between (13 10.76 and 461.316). Both 

spreads from A, and As contribute to the total spread between upper and lower toad 

values. 

The total spread = 424.722 + 20.196 [sin (5wt)l 

The effect of the large middle and spread values of A, shows the fuzziness in the 

large range where predicted load should lie in it. 

Parameter .4, has a large middle and spread, because A, represents the base load 

while the other parameters (either fuzzy or not), are contributing to the excess power 

vanations due to other load factors. 

Both the middle and spread of the base load parameter increase due to the increase in 

load deviation. 

Al1 load parameters follow the same pattern of variation at each load deviation. 

7.3.2 Load Estimation And Prediction 

The estimated and predicted loads for a sumrner day, either weekday or 

weekend day, are given in Figures (7.13) to (7.20) for the ranges of load deviation. 

Examining these figures reveals the following: 



+ The load model B estimates and predictes the load power at any week day in any 

season given that the actual load does not violate the upper and lower load values. 

+ As the ioad deviation increases, the range between the upper and the lower loads 

increases due to increases in the spread of the fùzzy parameters. 

In conclusion, model B is as good as Model A. Despite the fact that model B does not 

account for the weather variation, the predicted load does not violate the upper or lower 

load limits. 

Daily hours 
Figure (7.13) Estimated load for a summer 

weekday, crisp load, Model B 
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Figure (7.14) Estimated load for a summer weekday, 
(5% load deviation), Model B 
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Figure (7.1 5) Estimated load for a summer weekday, 
(10% load deviation), Model B 
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7.4 Fuzzy Load Model C 

The developed fuuy model C in Chapter 5 is tested for summer weekday or weekend 

days. This model is a hyprid combination of models A and B. A summer weekday load 

data are used to estimate the fiizzy parameters of the model. These parameters are then 

used to predict the load power one day aead .  The load deviation that creates Fuzziness is 

changed from O%, 5 % to 20 %, with a degree of fuzziness of 50 %. 

7.4.1 Load Parameters For Model C 

Table (7.4) gives the estimated 24 fûzy  parameters. 23 parameters and the 

base load parameter, at different load deviations. Examining this table reveals the 

following: 

~ o s t  of the load prameters are crisp. since the spreads are zeros. There are three 

fuzzy parameters, and they are the same parameters in the three cases of the load 

deviation (&, A+ Bs). 

As the load deviation increases. the spreads of these parameters increase to include 

the parameter memberships in the solution. 

Large middle and spread values for -4, in the three cases, since A, is representing the 

base load. 

7.4.2 Load Estimations and Predictions For A Summer Day 

The estimated parameters are used to predict the load power 24 hours ahead, 

for either a weekday or i~aeekend day. Figures (7.21-7.28) give the estimated and 

predicted loads at the gi\pen load deviat ions. Examining these figures reveals the 

following: 

+ At load deviation equals the actual load is greater than the upper lirnit for two 

hours only by about 1.7 % and 4.1 9 4 .  which is still an acceptable amount. However, 

if the load deviation is increased to 1 O the actual load does not violate the upper 

load. 

The estimated load using the fuzzy parameters for al1 load deviation does not violate 

neither the upper nor the lower load. 





+ The actual load violates the upper Iimit load in: 

Crisp load case, Figure (7.25). 

5% load deviation case, Figure (7.26). 

10% load deviation case, Figure (7.27). 

This violation decreases as the load devation increases. For example, in 

Figure (7.28), the actual load does not violate the upper load, since the load 

deviation is increased to 20 %, which increases the fùzziniess of the load. 

+ Since the load varies between the upper and lower values, the estimated parameters 

can sufficiently be used to predict the load for any day in the week in any season. The 

load parameters must be updated fi-om weekday, weekend day and from season to the 

other. 

7.4.3 Load Estimation and Prediction For A Winter Day 

The results obtained for the winter weekday are reported in the appendices 1 

and 2.The same conclusions can be made. 

7.5 Conclusion 

In this chapter, the füzzy short term load forecasting problern is solved. The three 

models developed in chapter 5 are implemented to predict the load. The three models are 

used to estimate the load power at any day in any season, based on fùzzy optimization 

rules. The predicted load lies between upper and lower limits. It has been shown that the 

actual load never violates these limits. 
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Chapter 8 

Conclusions and Recommendations 

For Future Research 
8.1 Conclusions 

Load forecasting is an important tool in power applications. In this thesis, Fuzzy 

short term load forecasting is formulated and solved. There are many good models used 

for electric load forecasting. The models proposed in the thesis represent an addition to 

the existing models in short term electric Ioad forecasting and demonstrate the 

applicability of fuzzy techniques. 

The thesis starts with a discussion of conventional algorithms used in short-term 

load forecasting. These algorithms are based on least error squares and least absolute 

value. The theory behind each aigorithm is explained. 

Three different models are developed and tested in the first part of the thesis. The 

first model (A) is a regression model that takes into account the weather parameters in 

summer and winter seasons. The second model (B) is a harmonics based model, which 

does not account for weather parameters, but considers the parameters as a fûnction of 

time. Model (B) can be used where variations in weather parameters are not appreciable. 

Finally, model (C) is created as a hybrid combination of models A and B the parameters 

of the three models are estimated using the two static estimation algorithm and are used 

later to predict the load for twenty-four hours ahead. The results obtained are discussed 

and conclusions are drawn for these models. 

In the second part of the thesis new fuzzy models are developed for crisp load 

power with fuzzy load pararneters and for fuzzy load power with Fuzzy load parameters. 

Three fuzzy models (A),(B) and (C) are developed. The fuzzy load model (A) is a fuzzy 

linear regression model for summer and winter seasons. Model (B) is a harmonic hzzy 

model, which does not account for weather pararneters. Finally fuzzy load model (C) is a 



hybrid combination of f u u y  load models (A) and (B). Estimating the fuzzy parameters 

for the three models turns out to be one of linear optimization. The fuzzy pararneters are 

obtained for the three models. These parameters are used to predict the load as a fÙzzy 

function for twenty-four hours ahead. Prediction results are obtained and presented using 

data from Nova Scotia power and Environmental Canada. 

8.1.1 Static and Fuzzy Results Cornparison 

It is acknowledged that LES (Least Error Square) and LAV (Least Absolute Value) 

estimates and predictions deviate from the achial values with errors. Results from static 

models contain range of errors caused by the type of data, type of models used and how 

many factors are represented. It is been found that the range of errors is sometimes large. 

With more data and more representing variables, the results will clearly be improved. 

LES and LAV are represented here as predicting tools. It is preferred if the error is 

overpredicted since the system operator will work with a safe tolerance in meeting the 

consumer demand. 

The fuzzy estimates offer a range of values that can be usehl to system operators. 

These estimates are more reliable than static estimates. 

8.1.2 Main Contributions 

The thesis contributes the folloiving: 

1. Three new short-term ioad-forecasting static models are developed and tested. 

2. The hybrid mode1 C is a ne\\ innovation by the author of this thesis. 

3. A cornparison between t\vo static estimation algorithrns is performed for three 

short-term load-forecasting models for crisp power and cnsp load parameters. The 

two estimation algorithms are based on LES (Least Error Squares) and LAV 

(Least Absolute Value). I t  has been shown that using static state estimation to 

predict the load 24 hours ahead ma' produce large errors in the obtained 

estimates. 



4. Three short-term load forecasting f u v y  rnodels are developed and tested. The 

testing is made for h iuy  load parameters. The input data are taken to be cnsp 

while the output load powers are tested for three States of fuuiness. 

5. It has been s h o w  that the three proposed fuzzy models are suitable and adequate 

to short-term load forecasting. The output of the firzzy models is a range of upper 

and lower values for the predicted load power. This range can give the system 

operators the ability to run the power system in a more reliable and secure way. 

8.2 Suggestions for Future Research 

1. During the course of this study, especially the fuzzy load modeling calculation, 

the degree of fuzziness î. is assumed to be equal 50 %. However, this degree of 

fùzziness depends on the experience of the working operator in the field of f uvy  

systems and fuzzy load forecasting. It is worth while to study the effects of this 

degree of hiuiness on the load range for the hour in question to obtain the 

optimal range for the system dispatch. 

2. The forecasting of the load power in this thesis is perfonned off-line, it is 

worthwhile to develop a dynamic fuzzy load forecaster to predict the load on - 

line, or at least one hour ahead. This requires the availability of weather data and 

load history in advance for the hour in question. 

3. The weather information used in this thesis was obtained fiom Environmental 

Canada. It was recorded for a sniall part of Nova Scotia Province (Sheanvater 

Airpon Halifax). while the demand load was recorded for the whole province. It is 

worthwhile for future research ro study fuzzy load forecasting using the weather 

information data for the whole province. Better results will be obtained for load 

forecasting. 

4. The membenhip functions of the fuzzy parameters were assumed to be triangular. 

An investigation into the validity of this assumption is needed. In particular 

trapezoidal and Gaussian functions may be compared. 



5. It is appropnate to examine the practicality of solving the forecasts and modeling 

problems for fully fuzy set of  variables. 

6. A worthwhile effort would be to examine the combination of neural network in 

pre-forecasts followed by fuuy forecasting or other appropriate combination. 
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Appendix 1 

Winter Tables: Fuzzy Case 



Model A: 

Table (P1.l) Estimated load for a winter weekday, 
(20 % load deviation), Model A 

1 Daily hours 1 ActuaI load 1 Upper load 1 Middle load 1 Lower load ) 



Table (P1.2) Predicted load for a winter weekday, 
(20% load deviation), Mode1 A 

Daily bours 

1 
2 

Actual load 
0 
748.8 
655.9 

Upper load 
0 

1433.81 3 
1434.945 

Middle load 
0 

904.41 23 
905.5437 

Lower load 
0 

375.01 13 
376.1427 



Table (P1.3) Estimated load for a winter weekday, 
(5% load deviation), Model A 

Lower load 
0 

362.7927 
385.1 884 
376.657 8 
382.2508 
387.381 1 
399.0475 

Daily hours 

1 
2 
3 
4 
5 
6 , 

Upper load 
0 

1 171 -989 
1 194.385 
1 185.848 
1191.441 
1 196.578 
1208.244 

Actual load 
m 
735.9 
650.6 
61 3.1 
599.6 
604.8 
617.1 

Middle load 
0 

767.3909 
789.7866 
7 81 -2501 
786.849 
791 -9793 
803.6458 



Table (P1.4) Predicted load for a winter weekday, 
(5% load deviation), Model A 

Daily hours 

1 
2 
3 
4 
5 
6 

Upper load 
(MW 
I 299.978 

Actual load 
mw 
748.8 
655.9 
621 -5 
606.2 
604.1 
606.6 

494.4215 
489.0569 
498.5307 

Middle load 
ww 

895.3793 

7 
8 
9 

Lower load 
0 
490.781 
491 -9945 
496.1 457 
491.7602 
490.31 25 
487.1405 

1301.191 
1 305.342 
1300.957 
1299.509 
1296.337 

896.5928 
900.7439 
896.3585 
894.91 07 
891 -7388 
899.0198 
893.6552 , 

903.1 289 

625 1 1303.618 
723.9 
91 3.8 

1298.253 
1307.727 



Table (P1.5) Estimated load for a winter weekend dag, 
(20 % load deviation), Mode1 A 

Daily hours 

1 
2 
3 
4 
5 
6 
7 

Middle load 
m 

830.791 2 
833.7467 
832.5232 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 1 

Actual load 
0 
776.8 
71 0 

667.1 
647.2 
639.3 
642.8 

Lower load 
mw 

329.2061 
332.1 616 
330.9381 

Upper load 
( M W  

1 332.376 
1335.332 
1334.1 08 
1334.858 
1 327.748 
1330.898 

657.2 1 1 343.858 
689.3 1352.656 1 851.0706 

l 767.5 1 1359.129 i 857.5435 
898 1355.821 1 854.2363 

995.1 [ 1363.775 j 862.1894 
1016.2 1368.613 : 867.0279 
1008.1 j 1359.703 858.1177 
977.9 / 1354.002 1 852.4168 

833.2725 1 331.6873 

349.4855 
355.9583 
352.6512 
360.6043 
365.4428 
356.5326 
350.8317 

826.1 624 
829.3125 
842.2724 

24 

324.5773 
327.7274 
340.6873 

903.7 1291.464 789.8784 , 288.2933 

940.1 1 1353.171 ' 851.5858 350.0007 
905.1 1338.23 , 836.6452 1 335.0601 
892.8 1 1331.781 830.1959 
915.4 1 1323.021 821.4362 
915.1 ; 131 6.243 814.6578 

328.6108 
31 9.851 

31 3.0727 
887 1 1316.993 815.408 , 31 3.8228 

900.2 1314.049 812.4639 310.8788 
961.4 1308.722 807.1371 305.552 
953.1 1299.203 797.61 77 296.0326 



Table (P1.6) Predicted load for a winter weekend day, 
(20% load deviation), Mode1 A - 

Daily bours 

1 
2 
3 
4 
S 
6 
7 

Actual load 
0 
786 

71 1.3 
670.9 
653 

645.1 
646 
659 

Upper load 
0 
1 346.21 
1342.504 
1331 -71 7 
1332.81 1 
1332.12 
1 324.543 
1317.92 

Middle load 
0 

844.6251 
840.91 89 

, 830.1 323 
831.2263 
830.5352 
822.9579 
81 6.3345 

Lower load 
(MW 

343.0399 
339.3338 
328.5472 
329.641 1 
328.95 

321 .3728 
31 4.7494 



Table (P1.7) Estimated load for a winter weekend day, 
(5 % load deviation), Mode1 A 

Daily hours 

1 
2 
3 
4 
5 
6 
7 

Actual load 
0 
776.8 
710 

667.1 
6411.2 
639.3 
642.8 
657.2 , 

Lower load 
(MU? 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Upper load 
0 

Middle load 
0 

1197.809 
f201.219 
1200.542 
1200.075 
1 192.373 
1 195.785 
1209.825 

689.3 
767.5 
898 

995.1 

81 8.43911 
821 -8492 
821 -1 721 
820.7051 
81 3.0028 
81 6.41 52 
830.4552 
838.1 832 
843.641 4 
840.4249 
849.01 79 

' 1217.553 
1 223.011 
1219.795 , 

1228.388 

439.0692 
442.4793 
441.8021 
441 -3351 
433.6329 
437.0453 
451 .O853 
458.81 32 
464.271 4 
461.0549 
469.648 
472.5503 
464.2473 
461 .O55 

459.9039 
444.358 
439.2308 
429.7921 
424.0301 
425.6229 
422.2542 
41 6.5223 
407.8729 
398.4969 

1 O1 6.2 
1 008.1 
977.9 
940.1 
905.1 
892.8 
91 5.4 
91 5.1 

1231 -29 
1 222.987 
12119.795 
121 8.644 
1203.098 
1 1 97.971 
11 87.932 
1 182.77 

851.9202 
843.61 72 
840.4249 
839.2739 
823.7279 
81 8.6008 
808.5621 

803.4 
804.9928 
801.6241 

887 1 184.363 
900.2 11 80.994 
961.4 
953.1 
903.7 

1 175.262 1 795.8923 
1 166.61 3 
1 157.237 

787.2429 
777.8669 



Table (P1.8) Predicted load for a winter weekend day, 
(5% load deviation), Model A 

Daily hours 

1 
2 
3 
4 
5 

! 6 
7 
8 
9 
10 

Actual load 
0 
786 

Middle load 
(MW 

831 -3076 
826.5298 
81 7.1 506 
81 8.8534 
81 8.0698 
810.3345 
804.8357 

Upper load 
( M W  

1210.677 

Lower load 
0 

451 -9377 
447.1599 
437.7807 
439.4835 
438.6999 

, 430.9646 
425.4658 

687.6 1 1180.378 1 801.0081 
767.7 1171.985 j 792.6147 
889.4 i 1173.958 i 794.5875 

711.3 1 1205.9 
670.9 1 11 96.521 
653 1 1 198.223 

645.1 1197.44 
646 1 1189.704 
659 / 1 184.206 

421.6381 
413-2448 
415.2176 



Model B 

Table (P1.9) Predicted load for a winter weekday, 
(20% load deviation), Model B 

t 

15 l 940.1 i 1304.163 870.7567 437.3499 1 
16 1 905.1 : 1289.748 875.9318 1 462.1153 ; 
17 1 892.8 1299.183 894.657 i 490.1308 1 

Daily hours Middle load 
(MW 

Actual load ' Upper load 
m WW) 

Lower load 
(MW 

470.3455 
389.1215 
359.2201 
344.6273 
335.2302 
325.4966 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

776.8 1 1354.124 1 912.2347 
710 1 1274.516 

14 1 977.9 1368.704 923.9869 479.2703 / 

831.8185 

657.2 i 1207.364 767.4948 327.6252 i 

667.1 1 1212.3 , 785.7601 
647.2 1161.758 753.1927 
639.3 1 1147.1 1 741.1701 
642.8 : 1167.671 1 746.5836 

689.3 1261.066 816.9554 
767.5 1354.7 924.7267 

372.8446 1 
494.7534 1 

898 i 1392.019 . 981.03 1 570.041 
995.f 1348.908 943.9782 1 539.0481 
1016.2 i 1395.226 977.572 j 559.9182 
1008.1 1581.876 1144.632 / 707.3882 



Table (P1.lO) Estimated load for a winter day, 
(0% load deviation), Mode1 C 

Daily bours 

1 
2 
3 
4 
5 

Actual load 
0 
11 17.6 
1006.4 
943.6 
871 -1 7 

813 

Lower load 
(MW 

981 -2758 
916.5328 
838.8899 
764.1 083 
725.8766 

Upper load 
0 

11 17.352 
1002.796 
947.7949 
930.072 
886.8589 

Middle load 
(MW 

1049.314 
959.6642 
893.3424 
847.0901 
806.3678 



Lower Joad 
(MW 

981.2758 
91 6.5328 
838.8899 
764.1 O83 

Table (P1.11) Predicted load for a winter day, 
(0% load deviation), Model C 

Daily bours 

1 
I 2 

3 
4 

Actual load 
0 
883.7 
806.5 
779 

772.4 

Upper load 
0 

11 17.352 
1002.796 
947.7 949 
930.072 

Middle load 
m 

1049.314 
959.6642 
893.3424 
847.0901 



Table (Pl.12) Estimated load for a winter day, 
(5% load deviation), Mode1 C 

Daily hours 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Actual load 
(MW 
11 17.6 
1006.4 
943.6 
871 -17 

81 3 
869.7 
91 4.8 
978.7 
11 57.3 

Lower load 
0 
926.1 97 
867.825 
788.9886 
71 3.5724 
677.91 14 
785.1266 
803.3668 
855.2292 
938.7039 

Upper load 
0 

1173.625 
1055.1 83 
1007.615 
998.351 3 
952.1 627 
993.3805 
1 000.306 
1 11 1.747 
1228.1 42 

Middle load 
(MW 

1049.911 
961 -504 
898.301 7 
855.9619 
81 5.037 

889.2535 
901 -8365 
983.4883 
1083.423 



Table (P1.13) Predicted load for a winter day, 
(5% load deviation), Model C 

Upper load 
m 

1 173.625 
1055.183 
1 007.615 
998.351 3 
952.1 627 
993.3805 

Daily hours 

1 
2 

i 3 
4 
5 
6 

Middle load 
m 

1049.91 1 
961 -504 
898.301 7 
855.961 9 
81 5.037 
889.2535 

Actual load 
(MW 
883.7 
806.5 
779 

772.4 
780.2 
795.6 

Lower load 
(Mu3 
926.1 97 
867.825 
788.9886 
71 3.5724 
677.91 14 
785.1266 

7 
8 
9 
10 
11 
12 
13 

843.3 
966.8 
1 145.8 
1225.8 
1220.9 
11 88.1 
1174.1 , 

803.3668 
855.2292 
938.7039 
1012.635 
1050.267 
1052.1 85 
974.8044 

1 0OOm306 1 901.8365 

843.5577 
830.2241 
773.3031 
750.6428 
796.521 9 
874.481 6 
868.2704 
876.7358 
871.6326 
832.6372 
883.51 36 

I 

, 

11 11 -747 
1228.1 42 
1254.239 
1239.701 
1274.589 
1262.633 

983.4883 
1083.423 
11 33.437 
1 144.984 
11 63.387 
1 118.71 9 
979.9797 
930.3224 
871 A403 
885.0286 
941 -9798 
987.7631 
962.251 3 

1 21 
I 22 
I 23 

24 

11 16.402 
1030.421 
969.5775 
101 9.41 4 
1087.438 
11 01 .O45 
1056.232 1 

14 [ 1 130.2 
15 

1128.4 1 11 14.093 / 995.4145 
' 1164.8 / 1160.676 1016.f54 

1 108.7 

1 126.5 1092.559 
1026.5 1 1082.281 

962.5981 
982.8972 

16 1 1082.2 
17 
18 
19 
20 

1105 
1 148.7 
1 146.9 
1120.2 



Table (P1.14) Estimated load for a winter day, 
(10% load deviation), Mode1 C 

Daily hours Actual load 
0 

Upper load 
( B l V  

1 
1 2 
i 3 
1 4 

5 
6 
7 

I 8 
9 
10 
11 
12 
13 
14 
15 

1 
I 16 
, 1 7 1  

Middle load 
(MW 

Lower load 
(MW 

872.5706 
822.7422 
730-3383 
663.6457 
631 -9821 
732.3086 
747.0405 
802.0327 
887.1494 
956.9797 
993.9083 
1001.566 
91 8.528 
787.587 
782.51 7 
726.4489 
698.8363 

1117.6 1229.683 1 1051.127 

18 j 1113.3 1148.609 944.8365 

1006.4 1 11 11.278 
943.6 1 1071 -51 7 
871.1 7 1 1 066.356 

81 3 1012.47 
869.7 1048.724 
91 4.8 / 1059.51 2 

741.0643 

967.0101 
904.9275 
865.0006 
822.2262 
890.51 63 
903.2762 

978.7 1 1167.856 ) 984.9442 
1t57.3 1 1284.741 1 1085.945 
1223.8 j 1315.252 1 1136.116 
f216.8 1294.429 1 1144.169 
1284.3 i 1326.631 1 1164.099 
1258.6 1320.511 j 1119.519 
1207.8 1180.547 / 984.0671 
1155.4 1 1087.571 / 935.0442 
f 110.6 i 1025.568 1 876.0086 
2 

1 19 1 1186.4 1152.285 987.6144 j 822.9443 
1 20 
1 1139 1 11 3.382 965.0074 81 6.6323 

21 1 1152.3 1 177.339 999.8724 , 822.4058 
22 i 1226.5 1222.244 1022.885 j 823.5271 

I 

I 23 1 1198.4 11 53.569 969.8036 786.0383 
j 24 1111.8 1141.033 984.1565 1 827.2798 



Table (P1.15) Predicted load for a winter day, 
(10% load deviation), Mode1 C 

' Daily hours 

1 
2 
3 
4 
5 
6 
7 
8 

1 9 
10 

11 1 

Actual load 
(MW 
883.7 
806.5 
779 , 

12 
13 

Upper load 
( M W  

1229.683 
1 1 1 1.278 
1071 -51 7 

772.4 / 1066.356 
780.2 1012.47 

1188.1 ' 1326.631 1164.099 
1174.1 1320.511 41 19.519 

Middle Load 
(MW 

1051.1 27 
967.01 01 
904.9275 

1001.566 
918.528 

f 4 1 1130.2 1180.547 984.0671 1 787.587 

Lower load 
( M W  j 

872.5706 
822.7422 
738.3383 1 

865.0006 
822.2262 

L 1 

! 15 
16 
17 

1 18 
19 

663.6457 
631 -9821 

795.6 1 1048.724 1 890.5163 , 

f108.7 1087.571 935.0442 782.517 1 
1082.2 1025.568 876.0086 726.4489 1 
1105 ! 1083.584 889.7103 j 695.8363 

1148.7 1 1148.609 944.8365 1 741.0643 
1146.9 1152.285 987.6144 i 822.9443 , 

732.3086 i 

20 1 1120.2 4113.382 965.0074 1 816.6323 
I 21 11 28.4 1177.339 999.8724 i 822.4058 1 
I 22 1 1164.8 1222.244 1022.885 823-5271 1 

23 1 1126.5 1 153.569 969.8036 786.0383 1 

I 

843.3 1 1059.512 
966.8 1 1167.856 

I 24 1026.5 1141.033 984.1565 1 827.2798 ; 

903.2762 [ 747.0405 1 
[ 984.9442 

1145.8 1284.741 j 1085.945 
1225.8 1 1315.252 1 1136.116 

802.0327 
887.1494 
956.9797 

1220.9 [ 1294.429 1 1144.169 1 993.9083 



Table (P1.16) Estimated load for a winter day, 
(20% load deviation), Mode1 C 

- .  

Daily hours Actual load 
I fMW) 

Lower load Upper load Middle load 
m l 0 



Table (Pl -17) Predicted load for a winter dny, 
(20% load deviation), Mode1 C 

Daily hours 

1 
2 
3 
4 
5 
6 

I 7 
8 
9 
10 
11 
12 

I 13 

14 , 

Actual load 
0 
883.7 
806.5 
779 

772.4 
780.2 
795.6 

Upper load 
0 

1344.002 
1228.994 
1204.884 
1202.089 
1 137.512 
1 164.442 

684.9222 
631.1302 

1209.479 / 947.2005 
1147.586 1 889.358 1 

15 
16 

Middle load 
0 

1052.904 
976.9838 
923.3297 
883.647 
836.41 2 
894.6974 

843.3 1 1 176.578 

11 08.7 
1082.2 

Lower load 
ww 

761 -8068 
724.9737 
641 -775 
565.2054 
535.31 15 
624.9526 

904.9697 
981.361 6 
1077.454 
1 127.952 
11 36.765 
11 58.285 
1 1 1 8.383 

966.8 
1 145.8 
1225.8 
1220.9 
1188.1 
11 74.1 

17 
18 

633.361 3 
686.0634 
766.71 14 
832.61 63 
873.5177 
887.04û5 
802.2847 

1276.66 
1388.1 96 
1423.288 
1400.012 
1429.521 
1 434.482 

1105 
1 148.7 

1 21 3.589 j 902.1 577 
1271.591 i 951.389 

679.6449 j130.2 

19 
20 

b 

21 
22 
23 
24 

590.7264 
/ 631.1869 

1308.965 1 994.305 

1146.9 1 1257.911 i 984.4548 
1 120.2 1 1223.917 ! 963.7767 

710.9983 
703.6367 

1128.4 i 1294.61 : 1000.486 l 706.3616 
71 2.7765 
678.4718 
709.0704 j 

1 164.8 
1126.5 
1026.5 

1 336.986 i 1024.881 
1269.019 j 973.7454 
1253.011 i 981.0406 



APPENDIX 2 

WINTER FUZZY FIGURES 
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Figure (P2.1) Estimated load for a winter weekday 
(20% load deviation), Model A 
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Figure (P2.2) Predicted load for a winter weekday 
(20%load deviation), Model A 
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Figure(P2.3) Estimated load for a winter weekend day 
(20% load deviation), Model A 
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Figure (P2.4) Predicted load for a winter weekend day 
(20% load deviation), Model A 
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Figure (P2S)Estimated load for a winter weekday 
(5% load deviation), Model A 
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Figure (P2.6) Predicted load for a winter weekday 
(5% load deviation). Model A 



i 
l 

200 1 
O 4 8 12 16 20 24 

i 
Daily Hours 

Figure (P2.7) Estimated load for a winter weekend day 
(5% load deviation), Model A 
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Figure (P2.8) Predicted load for a winter weekend day 
(5% load deviation), Model A 
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Figure (P2.9) Predicted load for a winter weekday 
(20 % load deviation ) using the parameters 

of the surnmerday, Model B 
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Figure (P2.10) Estimated load for a winter day 
(0% load deviation), Model C 
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Figure (P2.11) Predicted load for a winter day 
(0% load deviation), Model C 
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Figure (P2.12) Estimated load for a winter day 
(5% load variation), Model C 
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Figure (P2.13) Predicted load for a winter day 
(5% load deviation), Model C 
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Figure (P2.14) Estimated load for a winter day 
(10% load deviation), Model C 
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Figure (P2.15) Predicted load for a winter day 
(10% load deviation), Model C 
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Figure (P2.16) Estimated load for a winter day 
(20% load deviationl. Model C 



....... upper load 
.. .. ... Lower load 

. . -a. . - Middle - Actual load 
- - 

200 : l 

O 4 8 12 16 20 24 

Daily Hours 

Figure (P2.17) Predicted load for a winter day 
(20% load deviation), Model C 



Appendix 3 

Winter Tables: Static Estimation (Crisp Case) 



Model A: 

Table (P3.1) Estimated load and percentage error for a winter weekday 
using 24 parameters sets, Model A 

/ Daily hourr 1 ~ c t u a i  
- 

1 LES 1 LAV 1 % LES 1 % LAV 
1 

8 

i 
1 
2 

load(MW) 
943.4 

Estimation 
896.3 

850.5 ! 834 

Estimation 1 error error I 

863.1 
943.5 

1.94 -1.48 
5 i 10.02 



Table (P3.2) Estirnated load and percentage error for a winter weekday 
using one   ara met ers set, Mode1 A - I 

/ Daily hours 
I 

1 
I 2 

LAV 
Estimation 

1331.8 
1360.9 

1 3 i 1366.1 . 1340.3 1 1366 

Actual 
load@lW) 

1331.8 

1 -9 i O i 

LES 
Estimation 

1330.2 

O/o LES 
error 

O/* LAV ! 
1 

error , , 

1344.7 
0.1 O ! I 

1381.1 -2.7 -1.2 I 
I 



Table (P3.3) Predicted load and percentage error for a winter weekday 
using f 4 parameters sets, Mode1 A 

1 

% LAV ! 

error I 

Daily boum ' Actual 1 tond(M\n 
LES l LAV Prediction Prcdietion 

% LES 
error 



Table (P3.4) Predicted load and percentage error 

233 

for a winter weekday 
using one parameters set, Mode1 A 

Daily hours 

1 
2 
3 

1 4 
5 

% LAV 
error 

4-29 
-9.1 5 
-17.99 ] 
-9.18 1 
-9.18 1 

~ c t u a i  
- 

l o a d o  
883.7 
806.5 
779 

772.4 
772.4 

LAV 
Prediction 

886.2 
887.7 
949.9 
850.5 
850.5 

LES 
Prediction 

91 3.6 
900.3 
933.3 
824.8 
824.8 

% LES 
error 

-3.38 
-1 1.63 
-1 9.8 
-6.79 
-6.79 



Table (P3.5) Estimated load and percentage error for a winter weekend 
day using 24 parameters sets, Mode1 A 

Daily hours Actual 
load(MW) 

O/O LAV LES LAV % LES 1 
I 

error I 
I Estimation Estimation 1 error 



Table (P3.6) Estimated load and percentage error for a winter weekend 
day using one parameters set, Mode1 A 

Daiiy hours 

1 
2 
3 
4 
5 
6 
7 
8 

O h  L 4 V  
error 

-0.53 
-1 0.6 

LES 
Estimation 

797.7 
764.6 
755.1 
745.7 
648.6 
630.6 
662.1 
731.2 

Actual 
load(MW) 

776.8 
710 

667.1 
647.2 
639.3 
642.8 
657.2 
689.3 

-11.6 
-8.94 
0.8 

0.35 
-0.53 
4.1 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

J 

81 1.5 
865.4 
879.6 
1053.7 
1030.5 
935.6 
871 .3 
935.6 
81 4.3 
834.5 
854.8 
900.7 
931.5 
933.3 
974.8 
904.5 

LAV 
Estimation 

780.9 
785.3 
745.1 

767.5 
898 

995.1 
1 O1 6.2 
1008.1 
977.9 
940.1 
905.1 
892.8 
93 5.4 
91 5.1 
887 

900.2 
961.4 
953.1 
903.7 

% LES 
error 

-2.69 
-7.68 
-1 4 

799.9 
894 

928.2 
962.5 
1006.1 
973.7 
900.8 
955.6 
892.4 
829.1 
859.4 
890.7 
905.1 
965.9 
956.6 
898.7 

705 
634.2 
640.5 
660.7 
71 7.6 

-1 5.22 
1 

-1.45 
1.89 
4.75 
-6.07 
-5.73 
3.63 
1 f -61 
-3.69 
-2.22 
4.33 

-4.22 
0.45 
6.7 
5.28 
0.2 
0.43 

7.32 
-3.37 
8.8 
7.7 
6.59 
-1 -54 
-3.48 
2.93 
-2.28 
-0.09 1 

4.1 8 
-5.58 
0.04 
9.4 
6.1 

4.41 
-0.54 
-0.47 
-0.37 
0.55 



Table (3'3.7) Predicted load and percentage error for a winter weekend 
day using 24 parameters sets, Mode1 A 

% LAV 
error 

3.2 
i 

4.05 1 
4.74 1 
5.81 1 
8.21 

% LES 
error 

2.9 
3.01 
5.21 
8.85 
10.03 
13.57 
12.93 
21 -88 
25.81 
22.37 
9.67 
7.38 
0.9 

-2.1 2 

14.28 
12.11 
21.6 
26.26 
24.74 
11 .O9 
5.02 
1 -89 
-3.55 
-1 -63 
-2.38 
-1 -5 
-5.1 
-5.6 

4.38 
4.71 
-2.67 
-1.65 
-3.32 

' Daily hours 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 , 

! 

LES 
Prediction 

790.8 
71 6.3 l 

Actual 
load(MW) 

814.4 
738.5 
712 

699.9 
705.5 
717.1 
756.4 
866.6 
1035.1 
1095.8 
1085.7 
1057.4 
1042.7 
1003.3 

LAV 
Prediction 

788.4 
708.6 

I 

983 
977.1 
978.5 
989.2 
1025.3 

674.9 
638 

634.7 
61 9.8 
658.6 

15 
16 
17 
18 
19 
20 
21 
22 
23 

678.2 
659.2 
647.6 
61 4.7 
664.8 

976.7 
951.6 
959.5 
1000.5 
1006.2 
973.4 
972.2 
?O21 
997.3 

24 

992.6 
974.3 
973.9 
1 051.6 
1062.6 

909.5 1 

4.64 
-2.68 
-1 -98 
1.13 
-1 -9 

677 
767.9 
850.7 
980.7 
979.3 
1033.3 
1024.6 

-5.57 
4.23 
-3.9 

4.41 
-3.16 

1027.6 1 1035.5 
1013.3 / 1018 
1060.8 1 1048.2 

679.4 
763.3 
824.7 
965.3 
1004.3 
1023 

1038.9 1 

1 001.4 1013.8 
938.3 1 939.7 



Table Predicted load and percentage error for a winter weekend 
day using one parameters set, Mode1 A - 

Doily hours ~ c t u a l  LES LAV % LES % LAV 1 
1 
2 

load(MW) 
776.8 
71 0 

Predictioo 
797.7 
764.6 

error 
4.53 
-10.6 i 

Prediction 
780.9 
785.3 

error 
-2.69 
-7.68 



Model B : 

Table (P3.9) Estimated load and percentage error for a winter rveek 
day, Model B 

Daily hours 

1 
2 
3 
4 
5 
6 
7 

I 8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Actual 1 LES 
load(MW) ( Estimation 

943.4 1 199.08 

18 1 1405.2 1366.85 1407.81 i 2.7 

LAV 
Estimation 

780 
71 5 
650 

850.5 

4.2 1 

793.6 1 1023.73 1 793.24 
794.6 1 969.21 1 797.75 

1157.67 
811.2 1 1072.45 

% LES 1 "1' 1 

error I 

-27.1 1 17.3 1 

19 1 1403.3 1 1 62.88 1404.19 1 . 1  1 -0.1 1 

-36.1 
-32.2 
-29 
-22 

20 
21 

1 22 

15.9 j 
19.9 ( 

O I 
4.4 

810.3 1014.77 1 809.27 1 -25.2 0.1 

23 1390.9 11 34.51 887 t 18.4 1 36.2 1 
! 

24 1281.7 1099.54 1281 .O7 14.2 O l 4 

i 

1380.9 1 144.36 1382.12 i 17.1 4.1 

855.2 ' 929.75 1 857.75 
991 1085.1 991.43 

1 
1406.5 1 174.45 1406.14 16.5 / O I 

1440.9 1 154.32 1339.92 19.9 i 7 

-8.7 1 4.3 
-9.5 O 

0.1 1 
0.1 
4.2 , 

O f 
0.1 
-0.1 I 
4.1 
0.4 I 

1198.5 i 1375.46 1196.94 l -1 4.8 
1302.3 1486.53 1 1301.21 
1331.8 1446.21 i 1333.82 
1344.7 1344.73 1 1344.4 

-1 4.1 
4.6 

O 

1341.4 1264.1 8 1342.01 5.8 O I 

1 366.1 1350.99 1365.11 1 1.1 
1346.2 1182.07 1347.21 
1332.7 ' 1132.32 1334.5 

12.2 
15 

1320.6 1 1 74.25 1315.78 1 11.1 



Table (P3.10) Predicted load and perceotage error for a winter week 
day, Mode1 B 

[ Daily hours 1 Actual 1 LES 1 LAV 1 % LES 1 % LAV 

j 

1 
2 
3 
4 
5 
6 

load(MW) 
1096.8 
101 4.4 
988.9 
983.3 
991.3 
1003.1 

11 -8 
11.2 

O 
-0.16 ' 
0 .O4 

10.31 
7.42 
6.72 
4.76 
3.27 

1 20 1 1361.9 
t 
I 21 1 1349.6 
1 

Prediction 
121 7.08 
11 72.24 
1086.51 
1038.37 
1012.94 
1 063.71 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1 107.28 
3236.25 
1450.19 
1491.2 

1428.25 
1340.07 
1303.76 
1 186.46 
11 33.64 
1139.18 
1 180.8 

1249.37 

1050.2 
11 87.1 
1384 
1433 

1404.4 
1 354.1 
1319.2 
1261 -3 
1221.7 
1 184.5 
1 187.9 
1240.1 . 

1221.47 1200.94 
1249.4 

8.1 

1 error I 
-18.93 1 
-1 2.8 
0.4 
0.02 
4.1 4 
0.06 

Prediction 
1304.44 
1 144.71 
984.98 
983.1 5 
992.67 
1002.5 

1199.1 
131 3.89 
1264.48 

22 j 1313.9 , 1225.59 

4-08 
4.06 
0.09 
4.14 
4.1 8 
4.01 
0.02 
0.1 1 
0.1 6 
0.05 
4.2 
10.27 

7-88 

1 error 
-1 0.97 
-1 5.56 
-9.87 
-5.6 
-2.1 8 
-6.04 

1051 .O1 
1 187.86 
1382.71 
1434.98 
1406.94 
1354.2 
1319 

1259.87 
1219.76 
1 183.88 
11 90.33 
1243.48 

19 

j 23 

-5.43 -- 
4.1 4 
-4.78 
4.06 
-1 -7 
1.04 
1.1 7 
5.93 
7.21 
3.83 
0.6 

-0.75 

1262.5 1 1202.34 
i 24 

1307.1 

1166.7 i 1128.54 i 1166.23 

1204.12 1 1200.94 



Table (P3.11) Estimated load and percentage error for a winter 
weekend day, Mode1 B 

Daily bours 

1 

LAV 
Estimation 

780 
2 
3 
4 

Actual i LES load(MW) Estimation 
% LES 
error 

1.9 916.8 

% LAV 
error 

14.9 1 899.66 
846.7 
810.4 

O 
7 

15.5 846.56 
769.84 

836.88 
650 

801.4 I 748.77 652.21 
5 1 19.8 , 

6.6 18.6 1 



Table (P3.12) Predicted load and percentage error for a winter weekend 
day, Mode1 B 

% LAV 
error 

1.21 

Daiiy hours 

1 
2 
3 
4 
5 
6 
7 
8 

-2.56 
4.01 
0.1 

-0.42 
0.01 
4.04 
-0.03 
0.21 
4.36 
4-36 
4.09 
0.1 8 
0.1 3 
0.28 
0.21 
-0.27 
4.6 
0.27 
4.63 
4.45 
-1 -31 
-0.26 
0.1 

LAV 
Prediction 

938.83 
896.94 
805.05 
81 3.1 6 
809.71 
800.31 
81 1.44 
833.49 

' 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Actual 
load(MW) 

950.4 
874.5 
838.7 
814 

806.3 
800.4 
811.1 
833.2 

% LES 
error 

-1 4.64 
-20 .O7 
-1 6.78 
-1 4.1 5 
-6.49 

-9 
-6.3 
-7.44 

LES 
Prediction 

1089.5 
1050.04 
979.43 
929.2 1 
858.62 
872.44 
862.16 
895.18 

918.6 
1038.1 
1116.9 
1148.4 
f158 

11 35.1 
1098.2 
1 O7 4.5 
1 072 -9 
1110.2 
11 35.1 
1141.2 1 

-1 0.74 
-8.03 
-3.67 
0.47 
1.48 

101 7.23 
1121 -45 
1 157.88 

1'143 
1 140.82 

980.73 925 24 

91 6.64 
1041 -85 
1 120.92 
1 149.4 

1 1 55.89 

5.78 

11 59.6 
11 12.8 
1060.7 
981.7 

1041 .O3 
991.95 
1004.23 
1038.91 
1 110.88 
1021 -23 
996.94 

1 164.81 
11 27.33 
1063.46 

1023.25 
960.62 
961.22 

1 1.76 
13.68 
9.38 

1 133.63 
1 095.1 

1072.26 
1075.77 
1 1 16.84 
1 132.05 
1 148.43 

8.29 
9.68 
6.54 
3.1 7 
4.06 
10.03 
12-64 



Model C : 

Table (P3.13) Estimated load and percentage error for a winter day, 
Model C 

% LAV 
error 

-0.04 1 
0.08 1 
-2.29 
-0.04 
-0.01 

% LES 
error 

0.1 3 
4.01 
10.43 
0.24 
0.26 

Daily hours 

1 
2 
3 
4 

LES 
Estimation 

942.1 5 
850 .56 
81 4.68 
791.68 

Actual 
load(MW) 

943.4 
850.5 
81 1.2 
793.6 

LAV 
Estimation 

943.82 
849.79 
829.75 
793.89 
794.7 5 794.6 i 792.57 



Table (P3.14) Predicted load and percentage error for a winter day, 
Mode1 C 

Daily hours 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

O/O LES 
error 

13.01 
12.99 
4.1 6 
-3.93 
-5.98 
2.4 
7.33 
5.74 
8.98 
9.77 
7.58 
9.1 9 
7.67 
4.04 

LES 
Prediction 

972.23 
875.64 

Actual 
load(MW) 

11 17.6 
1006.4 
943.6 
871.1 
81 3 

869.7 
91 4.8 
978.7 
11 57.3 
1223 

121 6.8 

O/O LAV 
1 

error 
I 
I 

12.78 1 
f 2.97 
2.2 

4.75 
-6.73 
2.15 
7.3 
6.1 
9.32 
10.4 
8.51 
9.9 
8.45 
4.99 

LAV 
Prediction 

1 974.73 
875.91 

12 
13 

1284.3 j 1166.26 I 1157.16 
1258.8 / 1162.27 1152.49 

14 j 1207.8 j i 158.97 i 1147.51 

904.36 922.82 
905.33 1 912.45 
861.62 867.75 
848.86 1 851 
847.76 I 847.99 
922.48 1 919.0t 
1053.34 j 1049.43 
1 103.54 1095.86 
1124.58 / 7113.24 



Appendix 4 
Winter Static Figures 
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Figure (P4.1) Estimated load for winter weekday 
using 24 parameters sets, Model A 
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Figure (P4.2) Estimated load error for a winter weekday 
using 24 parameters sets, Model A 
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Figure (P4.3) Estimated load for winter weekday 
using one parameters set, Model A 
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Figure (P4.4) Estimated load error for a winter weekday 
using one parameters set, Model A 
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Figure (P4.5) Predicted load for a winter weekday 
using 24 parameters sets, Model A 
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Figure (P4.6) Predicted load error for a winter weekday 

using 24 parameters sets, Model A 
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Figure (P4.7) Predicted load for winter weekday 
usina one  aram met ers set. Model A 
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Figure (P4.8) Predicted load error for a winter weekday 
using one parameters set, Model A 
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Figure (P4.9) Estirnated load for a winter weekend day 
using 24 parameters sets, Model A 
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Figure (P4.10) Estimated load error for a winter weekend day 

using 24 parameters sets, Model A 
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Figure (P4.11) Estimated load for a winter weekend day 
using one parameters set, Model A 
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Figure (P4.12) Estimated load error for s winter weekend day 

using one parameters set, Model A 
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Figure (P4.13) Predicted load for a winter weekend day 
using 24 parameterts sets, Model A 
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Figure (P4.14) Predicted load error for a winter weekend day 
usina 24 naranieters sets. Model A 
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Figure (P4.15) Predicted load for a winter weekend day 
using one parameters set, Model A 
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Figure (P4.16) Predicted load error for a winter weekend day 
using one parameters set, Model A 
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Figure (P4.17) Estimated load for a winter 
weekday, Model B 
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Figure (P4.18) Estimated load error for a winter weekday, Model 
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Figure (P4.19) Predicted load for a winter 
weekday, Model B 
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Figure (P4.20) Predicted load error for a winter weekday, Model B 
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Figure (P4.21) Estimated load for a winter 
weekend day, Model B 
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Figure (P4.22) Estimated load error for a winter weekend day, 

Model B 
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Figure (P4.23) Predicted load for a winter 
weekend day, Model 6 
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Figure (P4.24) Predicted loa 8 error for a winter weekend day, 

Model B 
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Figure (P4.25) Estimated load for a winter day, Model C 



. . . . - - - . - - 

LES estimated load errors 

O LAV estimated load errors 

Figure (P4.26) Estimated load error for a winter day, Model C 
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Figure (P4.27) Predicted load for a winter day, Model C 
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Figure (P4.28) Predicted load error for a winter day, Model 


