
9 Electric Load Modeling for
Long-Term Forecasting

9.1 Introduction

Long-term electric peak-load forecasting is an important issue in effective and
efficient planning. Over- or underestimation can greatly affect the revenue of the elec-
tric utility industry. Overestimation of the future load may lead to spending more
money in building new power stations to supply this load. Moreover, underestimation
of load may cause troubles in supplying this load from the available electric supplies
and produce a shortage in the spinning reserve of the system that may lead to an inse-
cure and unreliable system. Therefore, an accurate method is needed to forecast loads,
as is an accurate model that takes into account the factors that affect the growth of the
load over a number of years. Furthermore, an accurate algorithm is needed to estimate
the parameters of such models.

The growth in electricity consumption in many developing countries has
outstripped existing projections, and accordingly, the uncertainties of forecasting
have increased [1]. Variables such as economic growth, population, and efficiency
standards, coupled with other factors inherent in the mathematical development of
forecasting models, make accurate projection difficult [1, 2]. Unfortunately, an accu-
rate forecast depends on the judgment of the forecaster, and it is impossible to rely
strictly on analytical procedures to obtain an accurate forecast.

The objective of the forecasting task is to provide energy and peak-load predic-
tions that meet planning requirements in a consistent and credible manner. A wide
variety of techniques for short-term load forecasting (hour-by-hour forecasting) are
available in the literature [6–18]; they include the autoregressive moving average
(ARMA); Kalman filtering algorithm; artificial neural networks (ANNs) [6–8]; expert
system (ES); fuzzy system (FS) [14], etc. A few of them have been applied to long-
term annual load forecasting. These techniques range from the simplest approach,
such as use of the most recent observation as the forecast, to highly complex
approaches, such as an econometric system of simultaneous equations.

The methods used for forecasting electrical peak load and energy for long-term
planning fall within two main categories—namely, the econometric and extrapolation
methods [3].

Reference [4] applies the least absolute value (LAV) estimation algorithm to estimate
the parameters of the annual peak-load model. The model used is a function of the time
only (one year is equivalent to one time step). Different orders for the peak-load models
are developed. However, all of them are linear in the parameters to be estimated.
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In this chapter we introduce different techniques used to estimate the annual
peak load, where different models are used. In the first part, the LAV and least
error squares (LES) static state estimation algorithms are used to estimate the para-
meters of the load model, and a comparative study is performed between the two
techniques.

9.2 Peak-Load-Demand Model

A model for peak-load demand should take into account the following factors or a
part of them, depending on the country in which this model is going to be implemen-
ted. There is no unique model that can be applied for utility companies.

These factors are

• The gross domestic product (GDP)
• The population (POP)
• The GDP per capita (GDP/CAP)
• The multiplication of electricity consumption by population (EP)
• The power system losses (LOSS)
• The load factor (LF)
• The cost of one kilowatt-hour (the average rate per unit sale; R/S) (mill/kWh).

The first four factors depend on the behavior of the public; thus, they may vary
from country to country, whereas the last three factors depend on the electric
power system and the load itself, as well as the consumption of power generated.

Let us begin by putting aside the last three factors for a while, and focus on the first
four factors. We call these the country dependency factors. The peak-load demand in
this case can be written as

PL ¼ f GDPð Þ þ g POPð Þ þ h EPð Þ þ k GDP=CAPð Þ ð9:1Þ

where f, g, h, and k are functions of the variable stated between parentheses. They
may be linear and/or nonlinear functions. We assume, for simplicity’s sake, linear
relations between the peak-load demand and write these factors as

PL ¼ a0 þ a1GDPþ a2POPþ a3EPþ a4 GDP=CAPð Þ ð9:2Þ

where a0, a1, a2, a3, and a4 are the regression parameters to be determined by the
LES and LAV algorithms. The problem now is to determine these parameters
using the past data available:

PLi ¼ 1 GDP POP EP
GDP
CAP

� �
i

a0
a1
a2
a3
a4

266664
377775; i ¼ 1, m ð9:3Þ
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for i¼ 1, . . . ,m; m is the number of year observations available from past data his-
tory; m � 4. In vector form, equation (9.3) can be rewritten as

Z ¼ HX þ ξ ð9:4Þ

where Z is the m � 1 measurement vector of peak-load demand, H is an m � n obser-
vation matrix containing the factors that affect the peak load, X is the 5 � 1 column
vector of the load parameters to be estimated, and ξ is the m � 1 error vector to be
minimized. At least the past five years’ data should be given to determine the peak-
load-demand parameter X.

The solution to equation (9.4) based on the least error squares algorithm is

X� ¼ HTH
� ��1

HTZ ð9:5Þ

Furthermore, the least absolute value algorithm stated in references [4] and [5] is also
implemented to compute the best estimate based on LAV minimization criteria. The
steps behind the LAV algorithm are explained in reference [3] and Chapter 3.

Having identified the peak-load-demand parameters, we can predict the load for a
specified year, using equation (9.1), provided that the other variables in this equation
are known in advance for this year.

9.2.1 Example

The model proposed in the preceding section is tested using the data for a big utility
company [4]; the data are given for the years 1981 to 1988 and listed in Table 9.1.
The load model parameters are estimated using only the data of the year 1981 to
the year 1988 (m¼ 8 observations). Table 9.2 gives these parameters using the
LES and LAV algorithms. Table 9.3 gives the predicted peak-load demand for the
years 1989 to 1996 and the percentage error in this prediction using the two estima-
tion algorithms.

The absolute error for both techniques (residual vector) resulting from these
parameters for the eight years is given as

ζ LES ¼

�20:6
85:72

�141:21
71:60
68:69

�71:88
�9:69
17:38

266666666664

377777777775
For the LAV is ζ LAV ¼

0:00
37:99

�216:87
0:0
0:0

�128:54
0:0
0:0

266666666664

377777777775
Note that due to the interpolation property of the LAV, the algorithm fits five data

points. The estimated parameters in Table 9.2 are used to predict the peak load for the
years from 1989 to 1996.

Electric Load Modeling for Long-Term Forecasting 355



The predicted loads as well as the errors in this prediction, using LES and LAV
techniques, are given in Table 9.3. Examining this table reveals that both techniques
produce fairly good estimates for such type of forecast and such type of peak-load
model.

9.2.2 A More Detailed Model

Using four variables in the first model may not be adequate; thus, we need an accurate
model that takes into account all the factors stated previously. We may assume this
model to be

Table 9.1 Data for a Big Utility Company (Egyptian Unified Network, or EUN)

Year

Peak
Load
(GW)

GDP
(Million
EP)

POP
(Million) EP

GDP/
CAP

System
Losses
(MW)

Load
Factor
(%)

Cost of
Energy
(Mill/
kWh)

1981 3179 18985 42.11 30.11 450.85 4288.1 71.35 142.173
1982 3694 20628 43.33 33.58 476.07 4563.5 67.66 131.499
1983 3981 22450 44.50 35.67 504.49 4977.5 70.37 123.205
1984 4672 24042 45.77 37.06 525.26 5592.7 67.78 110.147
1985 5158 25691 46.99 38.60 546.73 6478.7 66.69 94.4155
1986 5361 26842 48.32 40.20 555.50 6159.0 68.66 101.59
1987 5803 27912 50.50 41.20 552.71 6862.6 69.25 86.200
1988 6152 29172 51.51 43.90 566.34 7479.1 70.22 70.2631
1989 6279 30417 52.54 46.02 578.93 7473.9 71.96 67.2093
1990 6664 31726 53.59 47.96 592.00 7369.8 71.34 65.6462
1991 7004 32799 54.66 50.58 600.02 7411.8 70.86 63.8323
1992 7215 33448 55.76 52.74 599.90 8124.7 71.96 58.9473
1993 7503 34282 56.87 54.58 602.80 8456.0 71.65 57.4074
1994 7657 35624 58.01 56.48 614.12 8415.3 72.46 58.33
1995 8149 37298 59.17 56.48 630.37 8555.8 71.90 61.2318
1996 8491 39161 60.35 58.54 648.87 8787.4 72.23 71.8849

Table 9.2 Estimated Parameters for the Peak-Load-Demand Model

Parameters LES Algorithm LAV Algorithm

a0 �2479.2 �4081.65
a1 0.329 0.2314
a2 28.5 39.39
a3 �37.86 �10.55
a4 �1.379 3.39
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PL ¼ a0 þ a1 GDPð Þ þ a2 POPð Þ þ a3 EPð Þ þ a4 GDP=CAPð Þ
þ a5 system lossesð Þ þ a6 LFð Þ þ a7 cost of kWhð Þ. ð9:6Þ

Equation (9.6) is a linear equation in the parameters to be estimated, a0 to a7. Thus,
equation (9.6) can be rewritten in the form of equation (9.4) as

Z ¼ HX þ ξ. ð9:7Þ
In equation (9.6), the following vectors and matrices are defined as follows:

Z is an m � 1 measurement vector of the past history of the peak-load demand;
H is an m � 8 measurement matrix of which the elements contain the seven factors stated in
equation (9.6);
X is the 8 � 1 load parameters a0 to a7;
ξ is an m � 1 error vector associated with each measurement to be minimized.

Therefore, we have eight parameters to be estimated, and at least eight measurements
should be available to estimate these parameters. Using only eight measurements may
produce a poor estimate because we force the errors vector to be zero (because the
number of equations equals the number of unknowns). Here, we use 12 measurements
to estimate the eight parameters using LES and LAV techniques. The solution to
equation (9.7) is similar to that given in equation (9.5). Table 9.4 gives the estimated
parameters using both techniques.

The validity of the proposed model and the accuracy of the estimated parameters
are checked by implementing the model to predict the peak-load power for the years

Table 9.3 Predicted Peak Load and the Percentage Error in This Prediction

Year

Actual Load
LES
Estimates

LAV
Estimates

MW
Peak-Load
Power % Error

Peak-Load
Power % Error

1989 6279 6484.72 �3.26 6803.46 �3.57
1990 6664 6853.84 �2.85 6871.56 �3.11
1991 7004 7127.10 �1.78 7161.55 �5.25
1992 7215 7290.35 �1.04 7331.86 �1.62
1993 7503 7522.71 �0.26 7558.99 �0.75
1994 7657 7909.18 �3.29 7932.76 �3.6
1995 8149 8470.57 �3.95 8420.90 �3.34
1996 8491 9013.63 �6.15 8939.46 �5.28

Table 9.4 Estimated Parameters for a Detailed Peak-Load-Demand Model

Parameters a0 a1 a2 a3 a4 a5 a6 a7

LES 4713.214 0.4192 �13.38 �27.997 �10.389 0.1535 �61.865 2.394
LAV 6398.75 0.4932 �33.835 �28.328 �13.8612 0.1256 �73.128 4.3864
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1993 to 1996, using the factors given in Table 9.1 for the same years. Table 9.5 gives
the estimated peak load and the percentage error in these estimates.

Examining Table 9.5 reveals the following observations:

• The predicted load using both techniques is accurate enough for such long-term forecasting.
• The predicted load for this estimation period using eight parameters is almost the same as

those using the five parameters stated in Table 9.2.
• The maximum predicted error for LES is about 6%, whereas it is about 9% for LAV, both

for the year 1996. These are fairly good estimates for such long-term forecasting.

9.2.3 A Time-Dependent Model

If the year under consideration is taken into account (the time horizon), then the peak-
load power demand can be written as

PL ¼ a0 þ a1 GDPð Þ þ a2 POPð Þ þ a3 EPð Þ þ a4 GDP=CAPð Þ
þ a5 system lossesð Þ þ a6 LFð Þ þ a7 cost of kWhð Þ þ a8 timeð Þ ð9:8Þ

In equation (9.8) the time takes values 0, 1, . . . ,Tf , where 0 is the starting year, 1 is
the next year, and so on. Furthermore, Tf is the number of years minus one used in this
study. Equation (9.8) can be rewritten in vector form as

Z ¼ HX þ ξ ð9:9Þ

In equation (9.9), the vectors and matrices are defined as follows:

Z is an m � 1 measurement vector of the past history of the peak-load demand;
H is an m � 9 measurement matrix of which the elements contain the eight factors stated in
equation (9.8);
X is the 9 � 1 load parameters a0 to a8;
ξ is an m � 1 error vector associated with each measurement to be minimized.

Therefore, we have nine parameters to be estimated, and at least nine measure-
ments should be available to estimate these parameters. Using nine measurements
may produce a poor estimate because we force the errors vector to be zero. Here,
we use 12 measurements to estimate the nine parameters using LES and LAV

Table 9.5 Predicted Peak-Load Power with the Percentage Errors

Year

Actual Load
LES
Estimates

LAV
Estimates

MW
Peak-Load
Power % Error

Peak-Load
Power % Error

1993 7503 7535.9 �0.438 7626.93 �1.652
1994 7657 7857.9 �2.624 7979.76 �4.215
1995 8149 8438.5 �3.552 8611.65 �5.678
1996 8491 8994.42 �5.929 9227.78 �8.68
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techniques. The solution to equation (9.9) is similar to that given in equation (9.5).
Table 9.6 gives the estimated parameters using both techniques.

The estimated parameters in Table 9.6 are used to predict the peak-load-demand
power for the past four years. Table 9.7 gives the predicted load and percentage
error in this prediction.

Examining Table 9.7, by using the time horizon, we note that

• The LES algorithm produces an accurate prediction for the peak-load power, whereas the
LAV produces a fairly accurate prediction.

• The results obtained using this model, especially for the LES estimation, are better than
those mentioned in Table 9.5.

• Examining Tables 9.5 and 9.7, we can conclude that the time horizon has little effect on the
prediction of the peak-load power.

9.3 Time-Series Analysis

In a time-series analysis model, a time series is constructed that takes into account the
effect of load for the previous years on the load for the year in question. The order of
this time difference series depends on the accuracy of the prediction needed as well as
the data available from the past history. The general form for this time series can be
formulated as

PL kð Þ ¼ a1PL k� 1ð Þ þ a2PL k� 2ð Þ þ a3PL k� 3ð Þ þ � � � þ � � � þ anPL k� nð Þ
ð9:10Þ

where k¼K, K� 1, K� 2, . . . , 1, K is the year in question, and n is the degree of the
time series. In this model, we use n¼ 4. Equation (9.10) in this case becomes

Table 9.6 Estimated Parameters for a Time-Dependent Model

Parameters a0 a1 a2 a3 a4 a5 a6 a7 a8

LES 5613.5 �0.0816 81.49 �74.81 6.67�0.01915�62.593 �4.925 397.62
LAV 5459.73 1.133 �182.43 14.473 �34.8 0.3293 �60.76 14.563 �455.8

Table 9.7 Predicted Peak-Load Power with the Percentage Errors

Year

Actual Load
LES
Estimates

LAV
Estimates

MW
Peak-Load
Power % Error

Peak-Load
Power % Error

1993 7503 7553.86 �0.68 7557.13 �0.455
1994 7657 7812.18 �2.027 7977.57 �4.187
1995 8149 8299.56 �1.847 8763.84 �7.545
1996 8491 8541.92 �0.600 9800.82 �15.428
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PL kð Þ ¼ PL k� 1ð Þ PL k� 2ð Þ PL k� 3ð Þ PL k� 4ð Þ½ �
a1
a2
a3
a4

2664
3775 ð9:11Þ

Equation (9.11) can be rewritten in vector form as

PL ¼ BX þ δ ð9:12Þ
where PL is a K � 1 peak-load power, B is a K � 4 measurement matrix that contains
the elements of the previous peak-load power, X is a 4 � 1 series parameters vector to
be estimated, and δ is a K � 1 error vector to be minimized.

The estimation problem formulated in equation (9.12) can be solved using the two
proposed algorithms, LES and LAV, explained in the previous sections. Having
identified the series parameters, we can then predict the peak-load power for the forth-
coming year.

9.3.1 Example for the Time-Series Model

The time-series model explained in this section is used to predict the load for the uti-
lity mentioned in the previous example. First, the series model parameters are esti-
mated using the LES and LAV algorithms. Table 9.8 gives these parameters.

The accuracy of these parameters is tested by predicting the annual peak power
from the years 1985 to 1996.

Table 9.9 gives the predicated annual peak-load power and the percentage errors in
this prediction using the proposed two algorithms. Examining this table reveals the
following:

• The model used in this section is an adequate model.
• Both the LES and LAV techniques produce accurate estimates, but the LES estimates are

better than the LAV estimates.
• The results obtained for this model are much better than those obtained in the other pro-

posed models.
• The model in this section is independent of the system variables, but it depends on the his-

tory peak-load power available.

9.3.2 Remarks

In this section, we discussed the following points:

1. Different models are developed and tested for long-term peak-load power forecasting.
2. We studied the effects of GDP, POP, EP, GDP/CAP, etc. on the performance of each devel-

oped model.

Table 9.8 Estimated Parameters for a Time-Series Model

Parameters a1 a2 a3 a4

LES 1.14735 �0.29612 0.78316 �0.61930
LAV 1.0020 �0.081380 0.61208 �0.504513
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3. We studied the applications of two parameter estimation algorithms, the LES and LAV
algorithms, on the prediction of the annual peak load.

4. In the time-dependent model, the LES algorithm produces better-predicted results than the
LAV algorithm.

5. The time-series model is the best one for such systems because it has the lowest error rate
among the other developed models.

It is worthwhile to state here that every power system has its own model; the one
suitable for a particular system may not be suitable for another system.

9.4 Kalman Filtering Algorithm

Long-term forecasting is characterized by its high uncertainty owing to its high
dependence on socioeconomic factors; for this reason, an error level up to 10% is
acceptable [28]. These results are highly dependent on uncertain parameters such
as electric utility, region, country, economic growth, population growth, and popula-
tion habits. Moreover, the data on which the long-term forecasting technique is tested
play an important factor in determining the level of the forecast error. An algorithm
that gives a low average forecast error for a certain electric utility in a certain country
may not give the same level of error for a different utility in a different country.
Therefore, any attempt for comparing different forecasting techniques should utilize
the same testing data.

The technique used in this section combines regression estimation with a time-
series load model suited for the Kalman filtering approach. Historic load data over

Table 9.9 Predicted Load Using the Time-Series Model

Year

Actual Load
LES
Estimates

LAV
Estimates

MW
Peak-Load
Power % Error

Peak-Load
Power % Error

1985 5158 5106 1.00 5014 2.8
1986 5361 5305 1.10 5217 2.6
1987 5803 5768 0.60 5671 2.28
1988 6152 6152 0.00 5969 2.97
1989 6279 6343 �1.0 6183 �1.02
1990 6664 6688 �0.40 6548 1.74
1991 7004 7041 �0.50 6851 2.2
1992 7215 7256 �0.57 7104 �0.57
1993 7503 7549 �0.60 7450 �0.61
1994 7657 7885 �3.00 7776 �2.98
1995 8149 8134 0.20 8077 0.88
1996 8491 8416 0.90 8436 0.65
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a certain period of time, say one year, are arranged in a two-dimensional (2D) (24 hours�
52 weeks) layout. It is worth mentioning that a time period of one year is highly
suggested not only because this period provides a reasonable amount of data, but
also because it entirely exploits the underlying daily and seasonal load variations.
The technique used in this section employs the following primary features of the
long-term forecasting problem:

• Seasonal and daily load-demand behavior: The cyclic behavior of the load demand in
response to seasonal and daily variations is modeled using short-term linear regression tech-
niques over a specific period of time (one year). The short-term forecasting accuracy is high
due to the high correlation of the load time series. Therefore, the resulting model is reason-
ably accurate and establishes the basis for future (next year) trends of the load demand.

• Annual load-demand growth: The overall load demand of a system continually increases
due to population and industrial growth as well as increases in industrial consumption.
A third-order regression model is used to develop the annual growth in load demand as a
function of time. The annual growth provides an approximate correction factor for the
load-demand behavior for the next year.

Any long-term forecast is always inaccurate due to the complexity of the load-
affecting factors. For example, peak demand is very much dependent on temperature.
The fluctuation in temperature is extremely hard to forecast for a long period of time.
Therefore, the main objective of long-term load forecasting is to increase forecast accu-
racy. The load time-series behavior is developed as a linear time-varying mathematical
model relating the load at time instant k as a function of the load at time instances less
than k. The load model is then used to form a time-varying discrete dynamic system sui-
ted for the Kalman filter, which is employed to estimate and predict the next year’s load
demand. The Kalman filter is fed with the estimated load augmented with the annual
load growth obtained from the previous two steps as measurement values.

9.4.1 Estimating Multiple Regression Models

The electric load depends on a number of complex factors that have nonlinear char-
acteristics, and good results may not be obtained using a single linear model. The
approach taken in this section is the decomposition of the problem into multiple sim-
ple (first-order) linear regression models to capture the global nonlinear behavior of
the load. Each of the linear regression models extracts the short-term correlation of a
certain set of data. One year’s data are arranged into a two-dimensional layout with
24 columns representing 24 hours of a day and 52 rows representing 52 weeks of the
year. Figure 9.1 illustrates the 2D layout of the load data.

Special consideration is taken for the load variation during the weekends. Accord-
ingly, weekends are treated separately but in exactly the same manner as the working
days. The L(i, k) cell in Figure 9.1 is the average load of the working days of the ith
week at the kth hour. With this setup of the load data, obvious great intrinsic correla-
tions exist between successive columns as well as between successive rows, as illu-
strated in Figures 9.2 and 9.3, respectively. These two figures, and all subsequent
results, are based on the load demand of one of the largest electric power utilities
in Canada for the years 1994 and 1995.
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Figure 9.1 Two-dimensional layout of the load data.
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Figure 9.2 Comparing weekly average load of hour 1 and hour 2, 1994.
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Figure 9.3 Comparing weekly average load of weeks 1 and 2, 1994.
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Figure 9.2 shows the load correlation between hour 1 AM and hour 2 AM through-
out the whole year 1994. The correlation factor was calculated as 0.997. Similarly,
Figure 9.3 shows the load correlation of week 1 and week 2 of year 1994, with a cor-
relation factor of 0.985. The strong correlation is maintained over the entire year for
all 24 hours of the day, as illustrated in Figures 9.4 and 9.5.

The persistent correlation of the prevalent load patterns suggests the use of short-
term simple linear regression models for successive hours (see equation (9.13a)) and
another set for successive weeks (see equation (9.13b)). This results in 24 � 52 sim-
ple linear regression models, which are used to draw the shape of the 2D load beha-
vior contour for one year.

L i, kð Þ ¼ a kð Þ L i, k� 1ð Þ þ b kð Þ k ¼ 1, � � � , 24 ð9:13aÞ

L i, kð Þ ¼ c ið Þ L i� 1, kð Þ þ d ið Þ i ¼ 1, � � � , 52 ð9:13bÞ
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Figure 9.4 Correlation factor for successive hours of 52 weeks of 1994.
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Figure 9.5 Correlation factor for successive weeks over 24 hours of 1994.
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where

a(k) and b(k) are regression parameters at the kth hour; k¼ 1, 2, . . . , 24, which are determined
using the load pairs [L(i, k), L(i, k� 1)] for all i¼ 1, 2, . . . , 52, by the least squares method;
L(i, k) and L(i, k� 1) are the weekly average load at hours k and k� 1, respectively, for all
weeks i¼ 1, . . . , 52, with the initial condition L(i, 0)¼ L(i� 1, 24);
c(i) and d(i) are regression parameters of the ith week, i¼ 1, 2, . . . , 52, which are determined
using the load pairs [L(i, k), L(i� 1, k)] for all k¼ 1, 2, . . . , 24, by the least squares method;
L(i, k) and L(i� 1, k) are the weekly average load in the ith and (i� 1)th weeks, respectively,
for all hours k¼ 1, . . . , 24, with the initial condition L(0, k)¼ [L(52, k) of the previous year].

9.4.2 Estimating the Next Year’s Load Contour

The preceding regression models are used to project the load trends for the next year.
Figures 9.6 and 9.7 demonstrate the fact that successive years have nearly identical
load behavior contours.

A recursive procedure used to estimate next year’s load contour utilizing regres-
sion models of the previous year is as follows:
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Figure 9.6 Comparing average weekly loads for various weeks of 1994 and 1995.
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Figure 9.7 Comparing average weekly loads for various hours of 1994 and 1995.
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1. Estimate for the first week the weekly average load: This process corresponds to estimating
the first row of the next year’s load; refer to Figure 9.8(a). Using equation (9.13b), we cal-
culate L̂ 1, kð Þ

L̂ 1, kð Þ ¼ c kð ÞL̂ 0, kð Þ þ d kð Þ k ¼ 1, 2, � � � , 24 ð9:14Þ

where L̂ 1, kð Þ is the estimated weekly average load of the first week at the kth hour; L̂ 0, kð Þ
is taken as L(52, k)last-year, which is the weekly average load of last year’s 52nd week; and
[c(k), d(k)] is a pair of regression coefficients of the kth hour, obtained from equation
(9.13b) using last year’s data.

2. Estimating for the first hour the weekly average load: This process corresponds to estimat-
ing the first column of the next year’s load; refer to Figure 9.8(b). Using equation (9.13a),
we calculate L̂ i, 1ð Þ

L̂ i, 1ð Þ ¼ a ið ÞL̂ i, 0ð Þ þ b ið Þ i ¼ 2, 3, � � � , 52 ð9:15Þ

where L̂ i, 1ð Þ is the estimated weekly average load of the first hour in the ith week; L̂ i, 0ð Þ is
taken as L(i� 1, 24), which is the weekly average load of the 24th hour of the previous
week; and the [a(i), b(i)] is a pair of regression coefficients of the ith week, obtained
from equation (9.13a) using last year’s data.

3. Estimating for the second week the weekly average load: This process corresponds to esti-
mating the second row of the next year’s load; refer to Figure 9.8(c). Using equation
(9.13b), we calculate L̂ 2, kð Þ

L̂ 2, kð Þ ¼ c kð ÞL̂ 1, kð Þ þ d kð Þ k ¼ 2, 3, � � � , 24 ð9:16Þ

where L̂ 2, kð Þ is the estimated weekly average load of the second week at the kth hour; and
L̂ 1, kð Þ is obtained using equation (9.14).

4. Estimating for the second hour the weekly average load: This process corresponds to
estimating the second column of the next year’s load; refer to Figure 9.8(d). Using
equation (9.13a), we calculate L̂ i, 2ð Þ

L̂ i, 2ð Þ ¼ a ið ÞL̂ i, 1ð Þ þ b ið Þ i ¼ 3, 4, � � � , 52 ð9:17Þ

where L̂ i, 2ð Þ is the estimated weekly average load of the second hour in the ith week; and
L̂ i, 1ð Þ is obtained using equation (9.15).

5. The recursive iterations are repeated until i¼ 52 and k¼ 24.
6. Steps 1 through 5 are repeated for forecasting more years.

The preceding procedure produces a two-dimensional contour of the load behavior
for one year based on regression coefficients of the previous year. The load contour
will then be augmented by the annual load growth to account for the load change
between successive years.

9.5 Annual Load Growth

To maximize the accuracy of next year’s load-demand estimation, we estimate and
employ annual load growth as an adjusting factor. It is evident that there is a very strong
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dependence of the load demand on time. Typical load profiles of successive years
reveal very strong correlation at certain periodic time intervals. For example, refer to
Figure 9.7; the two load curves at a certain hour over the whole year for two successive
years retain the same shape. Moreover, there is, on average, a clear load increase over
the previous year. This increase amounts to an annual load growth at that hour as a
function of time (weeks) throughout the whole year. The load growth is modeled as
the difference between the load curves of two successive years as a function of time.

A third-order polynomial is utilized to model the load as a function of time at the kth
hour as a function of the load of the previous hour. The regression model is as follows:

L i, kð Þ ¼ β0 kð Þ þ β1 kð Þ L i, k� 1ð Þ þ β2 kð Þ L2 i, k� 1ð Þ þ β3 kð Þ L3 i, k� 1ð Þ
ð9:18Þ
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Figure 9.8 (a) First week (row) load estimation resulting from the first iteration. (b) First hour
(column) load estimation resulting from the second iteration. (c) Second week (row) load esti-
mation resulting from the third iteration. (d) Second hour (column) load estimation resulting
from the fourth iteration.
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where βj(k), j¼ 0, 1, 2, 3 are regression variables at the kth hour, and k¼ 1, 2, . . . , 24,
which are determined using the load pairs [L(i, k), L(i, k� 1) for all i¼ 1, 2, . . . , 52]
by the least squares method. The initial values L (i, 0) are set to L(i� 1, 24). The two
curves that approximate the relationship between L(i, k) and L(i, k� 1) corresponding
to the load behavior of the two years in Figure 9.7 are shown in Figure 9.9.

Next, the procedure for evaluating the annual load growth is as follows; we assume
that the annual load growth is calculated between 1993 and 1994 to be used for pre-
dicting the 1995 load:

1. Using equation (9.18), we determine the regression coefficients (24 sets) for 24 hours for the
year 1993. The coefficients define 24 approximate curves of the weekly average load, one
curve per hour.

2. We repeat the calculations of the previous step to the 1994 data.
3. We define the annual load growth as the difference of the approximate load curves of 1994

and 1993:

Annual Load Growth ið Þ ¼ L i, kð Þ 95ð Þ � L i, kð Þ 94ð Þ k ¼ 1, 2, � � � , 24, i ¼ 1, 2, � � � , 52
ð9:19Þ

The annual load growth curve is obtained by subtracting the approximate curve of
1994 from the approximate curve of 1993, as shown in Figure 9.10.
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Figure 9.10 Annual load growth variations during 52 weeks of a year.
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After estimating the shape of the load contour and augmenting it with the annual
load growth, we use the Kalman filtering algorithm to predict the next year’s load
demand. First, we express the dynamic variation of load with respect to load values
at previous hours as a time-varying linear model. Second, we construct a dynamic
time-varying state space model and adapt it for the Kalman filtering technique.
Last, we use the estimated regression and the annual load growth results as measure-
ment inputs for the Kalman filtering algorithm.

9.5.1 Load Modeling for the Kalman Filtering Algorithm

Generally, the load at any discrete time instant k¼ 1, 2, . . . , 24, corresponding to
24 hours of one day, can be expressed as a fourth-order time-varying linear model
as follows:

L i, kð Þ ¼ α0 kð Þ þ α1 kð Þ L i, k� 1ð Þ þ α2 kð Þ L i� 1, kð Þ þ α3 kð Þ L i� 1, k� 1ð Þ
ð9:20Þ

where

L(i,k)¼weekly average load at time instant: ith week and kth hour;
α0(k)¼ base load at time instant k;
αj(k)¼ j¼ 1, 2, 3, load coefficients at the kth hour.

The model assumes that the load coefficients are constant over each discrete time
instant k¼ 1, . . . , 24, of the 24 hours of the day. Parameter estimation is carried out
for each of the 24 discrete instances in a day. Accordingly, 24 sets of coefficients are
required to be estimated for one day. The estimated coefficients can be plugged into
the model to predict hourly loads for the next day.

9.5.2 Kalman Filter Parameter Estimation Algorithm

In this section we address only the necessary equation for the development of the
basic recursive discrete Kalman filter. Given the discrete state equations

x k þ 1ð Þ ¼ A kð Þx kð Þ þ w kð Þ
z kð Þ ¼ C kð Þx kð Þ þ v kð Þ ð9:21Þ

where

x(k) is n � 1 system states;
A(k) is an n � n time-varying state transition matrix;
z(k) is an m � 1 measurement vector;
C(k) is an m � n time-varying output matrix;
w(k) is an n � 1 system error;
v(k) is an m � 1 measurement error.

The noise vectors w(k) and v(k) are uncorrelated white noises. The basic discrete-time
Kalman filter algorithm recursive equations appropriate for forecasting problems were
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discussed earlier. The load model is used to form a time-varying discrete dynamic
system relevant to the Kalman filter. The dynamic system of equation (9.21) is
used with the following definitions:

1. The state transition matrix, A(k), is a constant 4 � 4 identity matrix.
2. The error covariance matrices are chosen to be identity matrices for this simulation; they

would be assigned better values if more knowledge were obtained on the sensor accuracy
and process error.

3. The state vector, x(k), consists of four parameters: [α0(k), α1(k), α2(k), α3(k)]
T.

4. C(k) is a four-element time-varying row vector, which relates the measured load data to the
state vector. (Refer to equation (9.21).)

5. The observation vector, z(k), for this application is a scalar representing the load at time
instant k. (Refer to equation (9.21).)

The observation equation z(k)¼C(k) x(k) has the form

z kð Þ ¼ L̂ i, kð Þ ¼ ½ 1 L̂ i, k� 1ð Þ L̂ i� 1, kð Þ L̂ i� 1, k� 1ð Þ�
α0 kð Þ
α1 kð Þ
α2 kð Þ
α3 kð Þ

2664
3775 ð9:22Þ

where the parameters and load values are defined in equation (9.20), with k represent-
ing the time instant of the 24 discrete hours of the day, k¼ 1, . . . , 24. L̂ i, kð Þ is the
estimated weekly average load using regression parameters and annual load growth.
For any time instant k, the Kalman filter iterates over all available load data, L̂ i, kð Þ for
all weeks, i¼ 1, . . . , 52, with additional interpolation load points to estimate the set of
parameters [α0(k), α1(k), α2(k), α3(k)]. Interpolation of load points is required to accel-
erate Kalman filter convergence by increasing its input data.

9.6 Computer Exercises

To verify the effectiveness of the proposed load-demand forecasting technique,
we used load data for one of the largest utility companies in Canada for the years
1994 and 1995. Regression models are obtained from 1994 data and used to project
load demand for 1995. Kalman filtering is used to increase the estimation accuracy
of the year 1995, and then the forecasted results are compared with the actual data
of 1995.

9.6.1 Multiple Regression Models Results

Using equation (9.13a), we calculate 24 sets of regression coefficients. Table 9.10
shows the first seven of these sets as a sample. This table also lists the correlation
factors of successive hours (columns) of the 1994 load data. Similarly, using equation
(9.13b), we calculate 52 sets of regression coefficients. Table 9.11 shows the first
seven of these sets as a sample, together with the correlation factors of successive
weeks (rows) of the 1994 load data.
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9.6.2 Estimating the 1995 Load Contour

The mean absolute percentage error (MAPE) with respect to the actual load is used to
measure the effectiveness of the estimated results. For n estimated load values, the
MAPE error is given by the equation

MAPE ¼ 100
n

Xn
i¼1

jL̂est,i � Lact,ij
Lact,i

ð9:23Þ

where L̂est,i and Lact,i are the estimated and actual ith load values, respectively.
The recursive procedure outlined in Section 9.4.2 is used to project the shape

of the 1995 load contour. The regression coefficients determined earlier—namely
[c(i), d(i)] and [a(k), b(k)]—are alternatively used to estimate a row and a column,
respectively, of the 1995 contour described in Figure 9.1. The procedure is carried
out for 24 iterations converging to the actual 1995 load. Figure 9.11 shows a sample
of the MAPE error convergence for each hour over the 24 iterations. As shown, the
error for each hour converges to its minimum. The overall MAPE error for the whole
year was found to be 5.12%.

Table 9.10 Correlation Factors and Regression Coefficients for Seven Hours of 1994

1994 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7

k = hour of
the day 1 2 3 4 5 6 7

Correlation
Factor 0.978 0.997 0.998 0.999 0.999 1.000 0.998

a(k) 0.973 0.994 1.014 1.022 1.025 1.024 1.049
b(k) �89.311 �76.835 �49.053 �31.009 �21.580 �11.659 �6.003

Table 9.11 Correlation Factors and Regression Coefficients for Seven Weeks of 1994

1994
i = Week
Number

Correlation
Factor c(i) d(i)

Week 1 1 0.985 0.918 80.911
Week 2 2 0.993 0.964 137.674
Week 3 3 0.987 0.953 123.455
Week 4 4 0.985 0.983 �86.209
Week 5 5 0.997 1.025 43.987
Week 6 6 0.994 0.909 �5.718
Week 7 7 0.976 1.161 �252.143
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9.6.3 Kalman Filter Prediction Results

To prepare the input (measurement) data forKalman filtering,we produce the annual load
growth and use it to augment the estimated load contours determined inSection 9.7.2. The
third-order polynomial load models described in equation (9.18) are used to calculate the
annual load growth for each hour of the day. Figure 9.9 shows the approximate fitted
curves for hour 3 of 1994 and 1995, and Figure 9.10 shows the annual load growth for
that hour. The annual load growth curves for all hours follow almost the same shape
with very minimal variations, as illustrated by Figure 9.12. During almost the first
10 weeks, the annual load growth is negative. This accounts for the unexpectedly low
load demand during these weeks in 1995, as noticed in Figure 9.7. The low power con-
sumption in these weeks of 1995was mainly due to the above-normal high temperatures.
The model naturally responds to the given data. It will react differently to different data
fromdifferent utilities. To reduce the dependency of the annual load growth on uncontrol-
lable short-term weather variations, we can calculate the average of the annual growth
over several years. Furthermore, second-order models will not be sufficient to pick up
such annual load growth variations. Third-order models or higher must be used. Models
with orders 3, 4, 5, and 6 were tested. It was found that models with orders higher than
third order were very sensitive to round-off errors and produce “very” incorrect results.

The fourth-order dynamic time-varying state space model for the Kalman filter
described in Section 9.5.2 is employed to implement the following steps:

Step 1 The initial condition of the parameter vector is fixed arbitrarily to ones.
Step 2 Run the Kalman filter for the first hour of the day (the first column of Figure 9.1) using

the actual load values of 1994 in the observation equation, equation (9.22), of the
Kalman filter model. We used Cubic-Hermit interpolation to generate five extra points
between each pair of load values to boost up the Kalman filter convergence. Save the
four load-model estimated parameters for prediction. Set i¼ 1 (i represents the week
number of 1995).

Step 3 Predict the load value of the ith week of 1995 using the saved load-model estimated
parameters:

Set i ¼ iþ 1; if i is greater than 52 weeks; go to step 5:
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Figure 9.11 (a) Regression estimation (MAPE) error over 52 weeks of 1995; (b) overall
regression estimation (MAPE) error over 52 weeks of 1995.
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Step 4 Use estimated regression load values of the ith week of 1995 data (from Section 5.2)
in the measurement equation, equation (9.22), to estimate the next set of load-model
parameters using the Kalman filter. Save the load-model parameters. Go to step 3.

Step 5 Use the estimated parameters of the previous hour as the initial condition for estimat-
ing the next hour’s coefficient using the Kalman filter. Repeat steps 3 and 4 for all
24 hours of the day.

The five steps of the preceding algorithm are illustrated using the flow diagram in
Figure 9.13.

Figure 9.14 presents the estimated Kalman filter load-model parameters. As illu-
strated, all estimated parameters converge to their steady-state value after some transi-
ent fluctuations. Table 9.12 presents only a sample (10 weeks) of the estimated load
using the Kalman filter together with the actual load demand of 1995. The large
MAPE error in some weeks, especially in the second to fourth weeks, is attributed to
the sudden, unexpected, and aberrant load condition in either year, which could not
be explained by any model variables. The prediction method used captures the general
behavior of the load over the year based on the previous year’s load data rather than its
short-term fluctuations. To reduce such aberrant effects, we could base the load predic-
tion on the average of several previous years instead of only one year’s data. Figure
9.15 illustrates the improvement in accuracy of the Kalman filtering algorithm by redu-
cing the error compared to that obtained by the regression technique. A comparison
between loads resulting from the estimated parameters and the actual load is shown
in Figures 9.16 and 9.17. The results show how closely the estimated model matches
with the actual load. Figure 9.16 also displays the MAPE error between the estimated
and actual loads. The overall MAPE error for the whole year 1995 was calculated to be
2.24%, and the overall standard deviation was found to be 4.6 MW.

9.6.4 Remarks

This part of the chapter presented a composite technique for long-term load forecasting
using multiple linear regression models and the Kalman filtering algorithm. Simple lin-
ear regression models, which capture 2D load behavior over one year, are utilized
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Figure 9.12 Annual load growth throughout 52 weeks of the year.
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Table 9.12 Sample of the Predicted Weekly Average Load Results for 1995 Using the Kalman Filter

Week

Hour 1 Hour 7 Hour 17 Hour 22

Actual Predicted MAPE Actual Predicted MAPE Actual Predicted MAPE Actual Predicted MAPE

1 998 993 0.57 887 871 1.76 1228 1212 1.36 1289 1277 0.89
2 1078 1000 7.25 1002 893 10.82 1293 1206 6.75 1339 1274 4.87
3 871 1100 26.40 767 1010 31.69 1136 1286 13.27 1145 1368 19.51
4 967 1151 19.09 880 1056 20.01 1244 1325 6.45 1302 1399 7.43
5 1024 1056 3.10 955 982 2.84 1238 1265 2.15 1304 1342 2.87
6 1101 1115 1.22 1055 1025 2.82 1290 1313 1.80 1375 1385 0.71
7 1082 1007 6.93 1017 928 8.72 1200 1219 1.59 1298 1287 0.81
8 999 939 5.93 924 872 5.60 1213 1190 1.91 1265 1268 0.27
9 1040 1043 0.26 976 961 1.51 1253 1244 0.70 1307 1322 1.21
10 924 914 1.13 843 835 0.95 1179 1160 1.61 1222 1237 1.18
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recursively to project the load behavior of the next years. The Kalman filtering
algorithm exploits the annual load growth to effectively improve the forecasting
accuracy. The results indicate that the mean absolute percentage error of the predicted
daily load does not exceed 2.3% of the actual load over a whole year period. With the
produced results, the proposed composite technique provides a significant advantage
compared to those typically seen in the literature in increasing the forecast accuracy.

9.7 Long-Term/Mid term Forecasting (Short-Term
Correlation and Annual Growth)

The great importance of long-term andmid term load forecasting for electric power utility
planning and its economic consequences is encouraging the development of forecasting
approaches in electric power research to improve its accuracy [20–36]. Since the 1980s,
many techniques have been developed to improve long-term and mid term forecasting
accuracy. Regressionmodels utilize the strong correlation of loadwith load-affecting fac-
tors such asweather. Amethod ofmathematical modeling for global forecasting based on
regression analysis was used to forecast load demand up to 2000. Long-term forecasting
based on linear and linear-log regression models of six predetermined sectors has been
developed. The time-series models—autoregressive (AR), moving average (MA), and
autoregressivemoving average (ARMA)—are popular andwidely accepted bypower uti-
lities at present. They require amassive amount of historical data to produce optimalmod-
els. Gray system theory is successfully used to develop dynamic load-forecastingmodels.

By nature, long-term electric load forecasting is a complex problem. Among other
factors, its accuracy is extremely influenced by the weather as well as social behavior
of the community of that load. These factors are difficult to predict for the long-term
load-forecasting time horizon. Conversely, short-term forecasting, though affected by
weather and daily social habits, is small enough to predict load with high accuracy.
Some short-term forecasting algorithms report to have results with a mean absolute
error of less than 1%. Consequently, short-term correlation of daily (24 hours) and yearly
(52weeks) load demandof a previous year is utilized to construct a one-year load-demand
behavior. The load trends obtained thus far are adjusted with the annual load growth
(ALG) to project load demand for the next year.Daily and yearly correlations aremodeled
as simple linear regressions onweekly average load (WAL) for the 24 hours and 52weeks
resulting in (24� 52) simple linear regression equations. Daily regression is used to
depict the relation between the loads at each hour with the hour prior to it, and weekly
regression relates the average weekly load with the week prior to it.

9.7.1 Load Regression Models

The mid term and long-term electric load demand as a function of time has a complex
nonlinear behavior. It depends on a number of complex factors such as daily and sea-
sonal weather, national economic growth, and social habits. All these factors depend
on time in a complex way. Therefore, a single mid term and long-term electric load-
demand model that accommodates most of these factors will have high nonlinear
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characteristics and may not give accurate prediction results. The approach taken in
this section is the decomposition of the problem into multiple simple (first-order) lin-
ear regression models to capture the global nonlinear behavior of the load. Each of the
linear regression models extracts the short-term correlation of a certain set of data.
Then a recursive iterative algorithm is used to tie up the short-term results to capture
the global load prediction.

One year’s worth of data is arranged into a two-dimensional layout with 24 col-
umns representing 24 hours of a day and 52 rows representing 52 weeks of the
year. Figure 9.18 illustrates the 2D layout of the load data.

Special consideration is taken for the load variation during the weekends. Accord-
ingly, weekends are treated separately but in the same manner exactly as the working
days. The L(i, k) cell in Figure 9.18 is the average load of the working days of the ith
week at the kth hour. With this setup of the load data, obvious great intrinsic correla-
tions exist between successive columns as well as between successive rows, as illu-
strated in Figures 9.19 and 9.20, respectively. These two figures and all subsequent
results are based on the load demand of one of the largest electric power utilities
in Canada for the years 1994 and 1995.

Figure 9.19 shows the load correlation between hour 1 AM and hour 2 AM
throughout the whole year 1994. The correlation factor was calculated as 0.997. Simi-
larly, Figure 9.20 shows the load correlation of week 1 and week 2 of year 1994, with
a correlation factor of 0.985. The strong correlation is maintained over the entire year
for all 24 hours of the day, as illustrated in Figures 9.21 and 9.22.

The persistent correlation of the prevalent load patterns suggests the use of short-
term simple linear regression models for successive hours (see equation (9.24a)) and
another set for successive weeks (see equation (9.24b)). This results in 24� 52 simple
linear regression models, which are used to draw the shape of the 2D load behavior
contour for one year.

L i, kð Þ ¼ a kð ÞL i, k� 1ð Þ þ b kð Þ k ¼ 1, � � � , 24 ð9:24aÞ
L i, kð Þ ¼ c ið ÞL i� 1, kð Þ þ d ið Þ i ¼ 1, � � � , 52 ð9:24bÞ
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h1 h 2 ... h 24 
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.

.

. L(i, k) 

w52

Figure 9.18 Two-dimensional layout of the load data.
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where

a(k) and b(k) are regression parameters at the kth hour; k¼ 1, 2, . . . , 24, which are estimated
using the load pairs [L(i, k), L(i, k� 1)] for all i¼ 1, 2, . . . , 52, by the least squares method;
L(i, k) and L(i, k� 1) are the weekly average load at hours k and k� 1, respectively, for all
weeks i¼ 1, . . . , 52, with the initial condition L(i, 0)¼ L(i� 1, 24);
c(i) and d(i) are regression parameters of the ith week, i¼ 1, 2, . . . , 52, which are estimated
using the load pairs [L(i, k), L(i� 1, k)] for all k¼ 1, 2, . . . , 24, by the least squares method;
L(i, k) and L(i� 1, k) are the weekly average load in ith and (i� 1)th weeks, respectively,
for all hours k¼ 1, . . . , 24, with the initial condition L(0, k)¼ [L(52, k) of the previous year].

9.7.2 Estimating the Next Year’s Load Contour

The first-order regression models developed in the preceding section are used to pro-
ject the load trends for the next year. Figures 9.23 and 9.24 demonstrate the fact that
successive years have nearly identical load behavior contours. The load contours of
the previous year (1994) coupled with the annual load growth are utilized to predict
the next year’s load (1995). Each regression model depicts a local relation of the load
contours of the two years. The 24 linear regression models of equation (9.24a) relate
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Figure 9.22 Correlation factor of successive weeks over 24 hours of 1994.
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Figure 9.23 Comparing weekly average load of the first weeks of 1994 and 1995.
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the load demand of successive hours of a day. They model the daily behavior of the
load. The seasonal behavior of the load is modeled by the 52 linear regression models
of equation (9.24b).

A recursive procedure used to estimate the next year’s load contour utilizing
regression models of the previous year is as follows:

1. Estimating for the first week the weekly average load: This process corresponds to estimat-
ing the first row of the next year’s load; refer to Figure 9.25(a). Using equation (9.24b), we
calculate L̂ 1, kð Þ:

L̂ 1, kð Þ ¼ c kð Þ L̂ 0, kð Þ þ d kð Þ k ¼ 1, 2, � � � , 24 ð9:25Þ

where L̂ 1, kð Þ is the estimated weekly average load of the first week at the kth hour; L̂ 1, kð Þ
is set to L(52, k)last-year, which is the weekly average load of last year’s 52nd week; and
[c(k), d(k)] is a pair of regression coefficients of the kth hour, obtained from equation
(9.24b) using last year’s data.

2. Estimating for the first hour the weekly average load: This process corresponds to estimat-
ing the first column of the next year’s load; refer to Figure 9.25(b). Using equation (9.24a),
we calculate L̂ i, 1ð Þ:

L̂ i, 1ð Þ ¼ a ið Þ L̂ i, 0ð Þ þ b ið Þ i ¼ 2, 3, � � � , 52 ð9:26Þ

where L̂ i, 1ð Þ is the estimated weekly average load of the first hour in the ith week; L̂ i, 0ð Þ is
set to L(i� 1, 24), which is the weekly average load of the 24th hour of the previous week;
and [a(i), b(i)] is a pair of regression coefficients of the ith week, obtained from equation
(9.24a) using last year’s data.

3. Estimating for the second week the weekly average load: This process corresponds to esti-
mating the second row of the next year’s load; refer to Figure 9.25(c). Using equation
(9.24b), we calculate L̂ 2, kð Þ:

L̂ 2, kð Þ ¼ c kð Þ L̂ 1, kð Þ þ d kð Þ k ¼ 2, 3, � � � , 24 ð9:27Þ

where L̂ 2, kð Þ is the estimated weekly average load of the second week at the kth hour, and
L̂ 2, kð Þ is obtained using equation (9.25).
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Figure 9.24 Comparing weekly average load of hour 3 of 1994 and 1995.
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4. Estimating for the second hour the weekly average load: This process corresponds to esti-
mating the second column of the next year’s load; refer to Figure 9.25(d). Using equation
(9.24a), we calculate L̂ i, 2ð Þ:

L̂ i, 2ð Þ ¼ a ið Þ L̂ i, 1ð Þ þ b ið Þ i ¼ 3, 4, � � � , 52 ð9:28Þ

where L̂ i, 2ð Þ is the estimated weekly average load of the second hour in the ith week and is
obtained using equation (9.26).

5. The recursive iterations are repeated until i¼ k¼ 24.

The preceding procedure produces a two-dimensional contour of the load behavior
for one year based on regression coefficients of the previous year. The load contour
will then be augmented by the annual load growth to account for the load change
between successive years.
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Figure 9.25 (a) First week (row) load estimation resulting from the first iteration. (b) First hour
(column) load estimation resulting from the second iteration. (c) Second week (row) load esti-
mation resulting from the third iteration. (d) Second hour (column) load estimation resulting
from the fourth iteration.
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9.7.3 Annual Load Growth

To maximize the accuracy of next year’s load-demand estimation, we estimate and
employ annual load growth as an adjusting factor. It is evident that load demand has a
very strong dependence on time. Typical load profiles of successive years reveal very
strong correlation at certain periodic time intervals. For example, refer to Figure 9.24;
the two load curves at a certain hour over the whole year for two successive years retain
the same shape. Moreover, there is, on average, a clear load increase over the previous
year. This increase amounts to an annual load growth at that hour as a function of time
(weeks) throughout thewhole year. The load growth ismodeled as the difference between
the load curves of two successive years as a function of time.

Practical load profiles show that second-order models will not be sufficient to pick
up the annual load growth variations. Third-order models or higher must be used.
Models with orders 3, 4, 5, and 6 were tested to best fit load profiles. It was found
that models with orders higher than third order were very sensitive to round-off errors
and produce “very” incorrect results. A third-order polynomial is utilized to model the
load as a function of time at the kth hour as a function of the load of the previous
hour. The regression model is as follows:

L i, kð Þ ¼ β0 kð Þ þ β1 kð Þ L i, k� 1ð Þ þ β2 kð Þ L2 i, k� 1ð Þ þ β3 kð Þ L3 i, k� 1ð Þ
ð9:29Þ

where βj(k), j¼ 0, 1, 2, 3, are regression variables at the kth hour, and k¼ 1, 2, . . . , 24,
which are determined using the load pairs [L(i, k), L(i, k� 1), for all i¼ 1, 2, . . . , 52]
by the least squares method. The initial values L(i, 0) are set to L(i� 1, 24). The two
curves that approximate the relationship between L(i, k) and L(i, k� 1) corresponding
to the load behavior of the two years in Figure 9.24 are shown in Figure 9.26. The
annual load growth curve is obtained by subtracting the approximate curve of 1995
(estimated data using regression models) from the approximate curve of 1994 (actual
data), as shown in Figure 9.27.
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Figure 9.26 Approximate curves of load of third hour of 1994 and 1995.
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Next, the procedure for evaluating the annual load growth is as follows; we assume
that the annual load growth is calculated between 1994 and 1995:

1. Using equation (9.29), we determine the regression coefficients (24 sets) for 24 hours for the
actual date from year 1994. The coefficients define 24 approximate curves of the weekly
average load, one curve per hour.

2. We repeat the calculations of the preceding step to the 1995 estimated data obtained using
the regression models.

3. We define the annual load growth as the difference of the approximate load curves of 1995
and 1994 of steps 2 and 1, respectively:

Annual Load Growth ið Þ ¼ L i, kð Þ 95ð Þ � L i, kð Þ 94ð Þ k ¼ 1, 2, � � � , 24,
i ¼ 1, 2, � � � , 52 ð9:30Þ

For each hour, the annual load growth is added to the 1995 estimated data obtained
using the regression models to produce the final prediction results.

9.8 Examples of Long-Term/Mid Term Forecasting

To verify the effectiveness of the proposed load-demand forecasting technique, we
used load data for one of the largest utility companies in Canada for the years
1994 and 1995. Regression models are obtained from 1994 data and used to project
load demand for 1995.

9.8.1 Multiple Regression Model Results

Using equation (9.24a), we calculate 24 sets of regression coefficients. Table 9.13
shows the first seven of these sets as a sample. This table also lists the correlation
factors of successive hours (columns) of the 1994 load data. Similarly, using equation
(9.24b), we calculate 52 sets of regression coefficients. Table 9.14 shows the first
seven of these sets as a sample, together with the correlation factors of successive
weeks (rows) of the 1994 load data.
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Figure 9.27 Annual load growth variations during 52 weeks of the year.
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9.8.2 Estimating the 1995 Load Contour

The MAPE with respect to the actual load is used to measure the effectiveness of
the estimated results. For n estimated load values, the MAPE error is given by the
equation

MAPE ¼ 100
n

Xn
i¼1

jL̂est, i � Lact, ij
Lact, i

ð9:31Þ

where L̂est, i and Lact,i are the estimated and actual ith load values, respectively. The
recursive procedure outlined in Section 9.7.2 is used to project the shape of the 1995
load contour. The regression coefficients—namely [c(i), d(i)] and [a(k), b(k)]—are
alternatively used to estimate a row and a column, respectively, of the 1995 contour
described in Figure 9.18. The procedure is carried out for 24 iterations converging to
the actual 1995 load. Figure 9.28(a) shows a sample of the MAPE error convergence
for each hour over the 24 iterations. As shown, the error for each hour converges to its
minimum. Figure 9.28(b) shows the convergence of the overall MAPE error for the
whole year, which was found to be 5.12%.

9.8.3 Annual Load Growth Results

The annual load growth is evaluated and used to augment the estimated load contours
determined in Section 9.8.2. The third-order polynomial load models described in

Table 9.13 Correlation Factors and Regression Coefficients for Seven Hours of 1994

1994 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7

k = hour of
the day 1 2 3 4 5 6 7

Correlation
Factor 0.978 0.997 0.998 0.999 0.999 1.000 0.998

a(k) 0.973 0.994 1.014 1.022 1.025 1.024 1.049
b(k) �89.311 �76.835 �49.053 �31.009 �21.580 �11.659 �6.003

Table 9.14 Correlation Factors and Regression Coefficients of Seven Weeks of 1994

1994
i=Week
Number

Correlation
Factor c(i) d(i)

Week 1 1 0.985 0.918 80.911
Week 2 2 0.993 0.964 137.674
Week 3 3 0.987 0.953 123.455
Week 4 4 0.985 0.983 �86.209
Week 5 5 0.997 1.025 43.987
Week 6 6 0.994 0.909 �5.718
Week 7 7 0.976 1.161 �252.143
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equation (9.28) are used to calculate the annual load growth for each hour of the day.
Figure 9.26 shows the approximate fitted curves for hour 3 of 1994 and 1995, and
Figure 9.27 shows the annual load growth for that hour. The annual load growth
curves for all hours follow almost the same shape with very minimal variations, as
illustrated by Figures 9.29 and 9.30. During almost the first 10 weeks, the annual
load growth is negative. This accounts for the unexpectedly low load demand during
these weeks in 1995, as shown in Figure 9.27. The low power consumption in these
weeks of 1995 was mainly due to the above-normal high temperatures. The model
naturally responds to the given data. It will react differently to different data from dif-
ferent utilities. To reduce the dependency of the annual load growth on uncontrollable
short-term weather variations, we can calculate the average of the annual growth over
several years.

Figure 9.31 shows a sample of the estimated weekly average load curves for some
weeks together with MAPE error over 24 hours of the day. Similarly, Figure 9.32 pre-
sents a sample of the weekly average load for some hours varying over 52 weeks of
the year. Introducing annual load growth improved the estimation results obtained in
Section 9.8.2. The resulting overall MAPE is 3.8 with a standard deviation of 4.14.
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Figure 9.28 (a) Regression estimation (MAPE) error over 52 weeks of 1995. (b) Overall
regression estimation (MAPE) error over 52 weeks of 1995.
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Figure 9.31 Comparison of a sample of estimated and actual load for 1995 during 24 hours.
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Figure 9.32 Comparison of a sample of estimated and actual loads for 1995 throughout
52 weeks.
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9.8.4 Remarks

This section demonstrated a long-term and mid term electric load-forecasting techni-
que for forecasting hourly daily load demand for a lead time of several weeks to a few
years. It was achieved utilizing short-term correlation of load behavior together with
its annual growth. First, using historic data over a specific period of time (one year),
we obtained the hourly daily load shape using multiple simple linear regression
parametric load models. Second, we employed the parametric models obtained
using alternating hourly and weekly load estimations to determine the shape of
the load behavior for the next year. Last, we added annual growth load to correct
the shape of the next year’s load. The results indicated that the mean absolute error
of the predicted weekly average daily load did not exceed 3.8% of the actual load
over a whole year period. With the produced results, the proposed model and forecast
technique used provide a significant advantage compared to those typically seen in
the literature for reducing the average absolute error between the forecasted and actual
loads over a forecast period of one year ahead.

9.9 Fuzzy Regression for Peak-Load Forecasting

In power system planning, a utility establishes goals and objectives, seeks to predict
environmental factors, and then selects actions that result in the accomplishment of
these goals and objectives [37–52]. The need for electric load forecasting is increasing
as power system planning attempts to decrease its dependence on chance and
becomes realistic in dealing with its environment.

Frequently, there is a time lag between awareness of an impending event or need
and the occurrence of that event. This time lag is the main reason for power system
planning and electric load forecasting. If the time lag is long and the outcome of the
final event is conditional upon identifiable factors, power system planning can play an
important role. In such situations, electric load forecasting is needed to determine
when a need will arise so that the appropriate action can be taken.

The load growth of a geographical area served by a utility company is the most
important factor influencing the expansion of a power system. Therefore, the forecast-
ing of an increasing load and power system reaction to such load growth is essential
to the planning process. Electric load forecasting can be regarded as answering this
question: What amount of electricity should be arranged to supply a specific number
and type of customer over a specific period of time? Forecasting can be achieved by
performing analysis of past and/or present data, identifying trends and patterns that
exist in the data that are then used to project load into the future.

This section presents the application of a fuzzy regression technique to long-term
annual peak-load forecasting. The proposed technique takes into account the uncer-
tainties in the nature of the peak load. Different factors are taken into account on
modeling the peak load. These factors include the gross domestic product (GDP),
population (POP), GDP/POP, the multiplication of the consumption of electricity
and population (EP), the system losses (PL), and the rate of sale of electricity (RS;
the price). Finally, we consider the time in question. Different fuzzy models are
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developed that relate these variables with the peak load. This section offers an exam-
ple for estimating the peak load for the Egyptian Unified Network (EUN) to explain
the main features of the proposed algorithm.

9.9.1 Modeling of Electric Annual Peak Load

Annual peak-load demand mainly depends on the community and the nation within
this community. The main factors that greatly affect the growth of the load on a power
system are different from one nation to another. For the Egyptian Unified Network,
the following factors are to be considered when modeling the annual peak load:

• The gross domestic product (GDP)
• The population (POP)
• The gross domestic product per population (GDP/POP)
• The electric population (EP)
• The system losses (SL)
• The load factor (LF)
• The rate of sale (RS) measured in mill/kWh
• The time horizon (the year in question; T)

The annual peak-load demand is a function of these variables. The technique
developed in reference [9] uses some of these factors to estimate the annual peak-
load demand of Japan. In this section, we consider all these variables to obtain a
fuzzy model for the annual peak load.

9.9.2 A Nonfuzzy Peak Load with Fuzzy Parameters

In this section, we assume that the peak load is nonfuzzy, whereas the parameters of
the load are fuzzy parameters with a symmetrical triangular membership function. In
this case, the annual load model can be written as

PL ¼ A0 þ A1 GDPð Þ þ A2 POPð Þ þ A3 EPð Þ þ A4 GDP=POPð Þ
þA5 SLð Þ þ A6 LFð Þ þ A7 RSð Þ þ A8 Tð Þ ð9:32Þ

where A0,A2, � � � , A8 are the model fuzzy parameters to be estimated, and each para-
meter has a certain middle p and a certain spread c. Equation (9.32) can be rewritten as

PL ¼ p0, c0ð Þ þ p1, c1ð Þ GDPð Þ þ p2, c2ð Þ POPð Þ þ p3, c3ð Þ EPð Þ
þ p4, c4ð Þ GDP=POPð Þ þ p5, c5ð Þ SLð Þ þ p6, c6ð Þ LFð Þ
þ p7, c7ð Þ RSð Þ þ p8, c8ð Þ Tð Þ

ð9:33Þ

In fuzzy regression, we seek to find the fuzzy coefficients that minimize the spread
of fuzzy output for all the data sets. In mathematical form, the objective function to be
minimized is

O ¼ min
Xm
j¼1

½c0 þ c1 GDPð Þj þ c2 POPð Þj þ c3 EPð Þj þ c4 GDP=CAPð Þj
(

þ c5 SLð Þj þ c6 LFð Þj þ c7 RSð Þj þ c8 Tð Þj�
)

ð9:34Þ

390 Electrical Load Forecasting: Modeling and Model Construction



This is subject to satisfying two constraints on each annual peak-load demand as

PLð Þj �fð p0 þ p1 GDPð Þj þ p2 POPð Þj þ p3 EPð Þj þ p4 GDP=CAPð Þj þ p5 SLð Þj
þ p6 LPð Þj þ p7 RSð Þj þ p8 Tð Þjg� 1� λð Þfðc0 þ c1ðGDPÞj þ c2 POPð Þj
þ c3 EPð Þj þ c4 GDP=CAPð Þj þ c5 SLð Þj þ c6 LPð Þj þ c7 RSð Þj þ c8 Tð Þjg;

j ¼ 1, � � � ,m
ð9:35Þ

PLð Þj �fð p0 þ p1 GDPð Þj þ p2 POPð Þj þ p3 EPð Þj þ p4 GDP=CAPð Þj þ p5 SLð Þj
þ p6 LPð Þjþ p7 RSð Þj þ p8 Tð Þjg þ 1� λð Þfðc0 þ c1 GDPð Þj þ c2 POPð Þj
þ c3 EPð Þj þ c4 GDP=CAPð Þj þ c5 SLð Þj þ c6 LPð Þj þ c7 RSð Þj þ c8 Tð ÞjÞg,

j ¼ 1, � � � ,m
ð9:36Þ

where λ is the degree of fuzziness.
The problem formulated in equations (9.34) to (9.36) is a standard linear program-

ming problem and can be solved using linear programming based on the simplex
method available in the IMSL/STAT library.

Having identified the fuzzy parameters of the model, we could easily forecast the
annual peak-load demand for any year, providing that the factors mentioned in
Section 9.9.1 are available.

9.9.3 A Fuzzy Peak-Load Demand

Due to the uncertainties in the annual peak-load-demand forecasting, we assume that
this load is a fuzzy load having a certain power mj with a spread αj, j¼ 1, . . . ,m. In
this case equation (9.32) can be rewritten as

mj, αj
� � ¼ p0, c0ð Þ þ p1, c1ð Þ GDPð Þj þ p2, c2ð Þ POPð Þj þ p3, c3ð Þ EPð Þj

þ p4, c4ð Þ GDP=POPð Þ þ p5, c5ð Þ SLð Þj þ p6, c6ð Þ LFð Þj
þ p7, c7ð Þ RSð Þj þ p8, c8ð Þ Tð Þj ð9:37Þ

Two fuzzy numbers are equal if and only if their middles and spreads are equal—that is

mj ¼ p0 þ p1 GDPð Þj þ p2 POPð Þj þ p3 EPð Þj þ p4 GDP=POPð Þj
þ p5 SLð Þj þ p6 LFð Þj þ p7 RSð Þj þ p8 Tð Þj; j ¼ 1, � � � ,m ð9:38Þ

and

αj ¼ c0 þ c1 GDPð Þj þ c2 POPð Þj þ c3 EPð Þj þ c4 GDP=POPð Þj
þ c5 SLð Þj þ c6 LFð Þj þ c7 RSð Þj þ c8 Tð Þj; j ¼ 1, � � � ,m ð9:39Þ

The problem now turns out to be: Given the previous history of the fuzzy annual
peak load in the form of (mj, αj), we need to find the fuzzy parameters A0, � � � ,A8 that
minimize the cost function given by
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O ¼ min
Xm
j¼1

½c0 þ c1 GDPð Þj þ c2 POPð Þj þ c3 EPð Þj þ c4 GDP=CAPð Þj
(

þ c5 SLð Þj þ c6 LFð Þj þ c7 RSð Þj þ c8 Tð Þj
)

ð9:40Þ

This is subject to satisfying the following two constraints in each load power

mj � 1� hð Þ αj �f p0 þ p1 GDPð Þj þ p2 POPð Þj þ p3 EPð Þj þ p4 GDP=POPð Þj
þ p5 SLð Þj þ p6 LFð Þj þ p7 RSð Þj þ p8 Tð Þjg� 1� λð Þfc0
þ c1 GDPð Þj þ c2 POPð Þj þ c3 EPð Þj þ c4 GDP=POPð Þj
þ c5 SLð Þj þ c6 LFð Þj þ c7 RSð Þj þ c8 Tð Þjg; j ¼ 1, � � � ,m

ð9:41Þ
and

mj þ 1� hð Þ αj �fp0 þ p1 GDPð Þj þ p2 POPð Þj þ p3 EPð Þj þ p4 GDP=POPð Þj
þ p5 SLð Þj þ p6 LFð Þj þ p7 RSð Þj þ p8 Tð Þjgþ 1� λð Þfc0
þ c1 GDPð Þj þ c2 POPð Þj þ c3 EPð Þj þ c4 GDP=POPð Þj
þ c5 SLð Þj þ c6 LFð Þj þ c7 RSð Þj þ c8 Tð Þjg, j ¼ 1, � � � ,m

ð9:42Þ
Again, the problem formulated in this section is a linear programming problem that

can be solved using the simplex method.
Having identified the model fuzzy parameters, we can estimate the peak annual

load for the forthcoming years.

9.10 Testing the Algorithm

9.10.1 Nonfuzzy Annual Peak Load

In this section we test the proposed algorithm for the data of the EUN [37–52]. The
data are given in Table 9.15. The data from year 1981 to year 1992, T¼ 0 to T¼ 11,
are used to estimate the fuzzy parameter of the model given in equation (9.37). The
unseen data for the rest of the years are used to evaluate the accuracy of the estimated
parameters. The linear programming available in the IMSL/STAT library is used to
solve the linear optimization problem. The fuzzy coefficients obtained are given as

A0 ¼ 0:0, 222.382ð Þ A5 ¼ 0:2652, 0:0ð Þ
A1 ¼ 0:075, 0:0ð Þ A6 ¼ 0:0, 0:0ð Þ
A2 ¼ 0:0, 0:0ð Þ A7 ¼ 0:0, 0:0ð Þ
A3 ¼ 0:0, 0:0ð Þ A8 ¼ 154.135, 0:0ð Þ
A4 ¼ 1.561, 0:0ð Þ

Note that A0 is the only fuzzy parameter. These estimated parameters are used to
estimate the annual peak load for the unseen data. Table 9.16 gives the results
obtained.
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Examining Table 9.16 reveals that the proposed algorithm estimates the annual
peak load very accurately, and the errors in the estimates are small compared to
the other techniques described in the literature.

We examined the effects of the degree of fuzziness on the estimated parameters in
this test, where we changed λ from a small value, 0.0, to a large value, 1.0. It has been
found that the degree of fuzziness has no effect on the middle of the fuzzy coeffi-
cients, but as the degree of fuzziness increases, the spread of the output increases
to satisfy the increased measure of goodness of fit.

9.10.2 Fuzzy Annual Peak Load

In this section we assume that the annual peak load is fuzzy and the spread of each
measurement is 0.1 from the actual peak load given in Table 9.15. The problem for-
mulated in equations (9.37), (9.38), and (9.39) is solved using the simplex method
based on linear programming. Table 9.16 gives the estimated parameters at different
degrees of fuzziness, for the first 12 measurements of Table 9.15. Tables 9.17 and
9.18 give the estimated load for the rest of the data of Table 9.15, unseen data, as
well as the error in the estimated value.

Examining these tables reveals the following observations:

• All the parameters are nonfuzzy parameters except the first one.
• As the degree of fuzziness increases, the spread of A0 increases.
• The estimated load is very close to the actual load, even the spread of the load, and still the

actual load moves between the boundaries of the triangular membership function we assumed.

Table 9.15 Actual, Estimated Annual Peak Load

Year Actual Load Estimated Load Error (MW) % Error

1993 7503 7603.61 �100.61 �1.34
1994 7657 7866.61 �209.61 �2.78
1995 8149 8213.92 �64.92 �0.80
1996 8491 8591.76 �100.76 �1.19

Table 9.16 Estimated Parameters at Different Degrees of Fuzziness

Parameter λ = 0.25 λ= 0.5 λ = 0.75

A0 (0, 745) (0, 805) (0, 1013)
A1 (0.165, 0) (0.1337, 0) (0.088, 0)
A2 (0, 0) (7.985, 0) (21.84, 0)
A3 (0, 0) (0, 0) (0, 0)
A4 (0, 0) (0, 0) (0, 0)
A5 (0.067, 0) (0.11482, 0) (0.179, 0)
A6 (0, 0) (0, 0) (0, 0)
A7 (0, 0) (0, 0) (0, 0)
A8 (108, 0) (127.82, 0) (153.5, 0)
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• As λ changes from 0.25 to 0.5, the annual peak-load demand is changed, and having the
same form as λ changes from 0.5 to 0.75. The degree of fuzziness has a great effect on
the behavior of the model.

9.10.3 Remarks

In this section, we did the following:

• We developed a new fuzzy model for the annual peak-load demand for long-term planning.
• We developed models to solve the problem of uncertainties of the annual peak demand.
• We developed models to treat the long-term planning variables. Some of these variables

depend on the nation of the community under investigation, whereas the others depend
on the electric system itself.

• More investigation should be carried out to estimate the annual peak load for 15 or 20 years
ahead. We were not able to do this due to the shortage of the data available to us.

9.11 Time-Series Models

A major aim of an electric power utility is to accurately forecast load requirements. In
broad terms, power system load forecasting can be categorized into long-term and
short-term functions [53–60]. Long-term load forecasting usually covers from 1 to
10 years ahead (monthly and yearly values) and is explicitly intended for applications
in capacity expansion and long-term capital investment return studies.

In this section we mainly focus on the long-term load forecasting with mathe-
matical methods. First, we introduce some basic foundations used with this
forecasting.

Table 9.17 Estimated Peak Load at λ¼ 0.25

Year Actual PL Estimated Pl % Error

1993 (7503, 750) (7498, 745) 0.060
1994 (7657, 766) (7824, 745) �2.200
1995 (8149, 815) (8217, 745) �0.083
1996 (8491, 849) (8647, 745) �9.943

Table 9.18 Estimated Peak Load at λ¼ 0.5

Year Actual PL Estimated Pl % Error in the Estimates

1993 (7503, 750) (7543, 805) �0.5
1994 (7657, 766) (7855, 805) �2.6
1995 (8149, 815) (8232, 805) �1.02
1996 (8491, 849) (8645, 805) �1.8
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9.11.1 Time Series

A time series can be defined as a sequential set of data measured over time, such as
hourly, daily, or weekly peak load. The basic idea of forecasting is to first build a
pattern matching available data as accurately as possible and then obtain the fore-
casted value with respect to time using the established model.

Generally, series are often described as having the characteristic

X tð Þ ¼ T tð Þ þ S tð Þ þ R tð Þ t ¼ � � ��1, 0, 1, 2, � � � ð9:43Þ
where T(t) is the trend term, S(t) is the seasonal term, and R(t) is the irregular or
random component. At this point, we do not consider the cyclic terms because
these fluctuations can have a duration from 2 to 10 years or even longer; therefore,
they are not applicable to short-term load forecasting.

We assume the following to make this example a bit easier:

1. The trend is a constant level.
2. The seasonal effect has a period s; that is, it repeats after s time periods. Or the sum of the

seasonal components over a complete cycle or period is zero.Xs

j¼1

S t þ jð Þ ¼ 0 ð9:44Þ

9.11.2 Forecasting Methods

To this point, we have used forecasting methods that are classified into two basic
types: qualitative and quantitative methods.

Qualitative forecasting methods generally use the opinions of experts to predict
future load subjectively. Such methods are useful when historical data are not avail-
able or are scarce. These methods include subjective curve fitting, the Delphi method,
and technological comparisons.

Quantitative methods include regression analysis, decomposition methods, expo-
nential smoothing, and the Box-Jenkins methodology.

9.11.3 Forecasting Errors

Unfortunately, all forecasting situations involve some degree of uncertainty, which
makes errors unavoidable.

The forecast error for a particular forecast X̂t with respect to actual value Xt is

et ¼ Xt � X̂t ð9:45Þ
To avoid the offset of positive with negative errors, we need to use absolute
deviations:

jetj ¼ jXt � X̂tj ð9:46Þ
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Hence, we can define a measure known as the mean absolute deviation (MAD) as
follows:

MAD ¼

Xn
t¼1

jetj

n
¼

Xn
t¼1

jXt � X̂tj

n
ð9:47Þ

Another method is to use the mean square error (MSE) defined as follows:

MSE ¼

Xn
t¼1

et
2

n
¼

Xn
t¼1

Xt � X̂t

� �2
n

ð9:48Þ

9.12 Power System Load Forecasting

The power system load is assumed to be time dependent, evolving according to a
probabilistic law [58]. It is common practice to employ a white noise sequence as
input to a linear filter of which the output is the power system load. This is an ade-
quate model for predicting the load time series. The noise input is assumed normally
distributed, with zero mean and some variance σ2. A number of classes of models
exist for characterizing the linear filter.

9.12.1 A Simple Example of Power System Load Forecasting

Consider the data on fuel consumption given in Table 9.19.
We can average the seasonal values over the series and use these, minus the overall

mean, as seasonal estimates shown here (overall mean is 761.65):

S 1ð Þ ¼ 888:2� 761:65 ¼ 126:55 S 2ð Þ ¼ 709:2� 761:65 ¼ �52:4
S 3ð Þ ¼ 616:4� 761:65 ¼ �145:25 S 4ð Þ ¼ 832:8� 761:65 ¼ 71:15

After subtraction of these values, the original series removes seasonal effects. It
should be noted that this technique works well on series having linear trends with
small slopes.

Table 9.19 Primary Energy Consumption in a Utility (Coal Equivalent)

Year 1 2 3 4

1965 874 679 616 816
1966 866 700 603 814
1967 843 719 594 819
1968 906 703 634 844
1969 952 745 635 871
Means 888.2 709.2 616.4 832.8
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In addition, we can look at the averages for each complete seasonal cycle (the period)
because the seasonal effect over an entire period is zero. To avoid losing too much data,
we use a method called moving average (MA), which is simply the series of averages:

1
s

Xs�1

j¼0

Xtþj ,
1
s

Xs

j¼1

Xtþj ,
1
s

Xsþ1

j¼2

Xtþj , � � �

A problem is presented here if the period is even because the adjusted series values
do not correspond to the original ones at time points. To overcome this problem, we
use the centered moving average (CMA) to bring us back to the correct time points.
This CMA is shown in Table 9.20.

Through looking at the differences between CMA and the original series, we can
estimate the kth seasonal effect simply by average the kth quarter differences:

S 1ð Þ ¼ 128:954 S 2ð Þ ¼ �46:487 S 3ð Þ ¼ �142 S 4ð Þ ¼ 65

But the sum of these four values is 5.107. Recall that we assume the seasonal sum to
be zero, so we need to add a correction factor of �5.107/4¼ �1.254 to give

S 1ð Þ ¼ 127:34 S 2ð Þ ¼ �47:741 S 3ð Þ ¼ �143:254 S 4ð Þ ¼ 63:746

Table 9.20 Calculation of the Moving Average

Quarter X(t) MA CMA(Order-2) Difference

1 874
2 679
3 616 746.25 745.25 �129.25
4 816 744.25 746.875 69.125
5 866 749.5 747.875 118.125
6 700 746.25 746 �46
7 603 745.75 741.75 �138.75
8 814 737.75 740.125 73.875
9 834 742.5 741.375 92.625
10 719 740.25 740.875 �21.875
11 594 741.5 750.5 �156.5
12 819 759.5 757.5 61.5
13 906 755.5 760.5 145.5
14 703 765.5 768.625 �65.625
15 634 771.75 777.5 �143.5
16 844 783.25 788.5 55.5
17 952 793.75 793.875 158.125
18 745 794 797.375 �52.375
19 635 800.75
20 871
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Now the irregular component can be easily calculated by subtracting both the CMA
and the seasonal effects.

If we suppose the model (1) is appropriate, then we can use it to make predictions.
To simplify, we omit the random data, so all we need to do is to predict the trend, say,
a linear trend:

T tð Þ ¼ aþ bt

With the application to the CMA, we have

T̂ tð Þ ¼ 713:376þ 3:647t

Hence, a prediction is shown in Table 9.21.

9.13 Linear Regression Method

The linear regression method is already used in short-term load forecasting and sup-
poses that the load is affected by some factors such as high and low temperatures,
weather condition, economic growth, etc. This relation can be expressed as

y ¼ β0 þ β1x1 þ β2x2 þ � � � þ βkxk þ ε ð9:49Þ
where y is the load, xi is the affecting factors, βi are regression parameters with respect
to xi, and ε is an error term.

For this model, we always assume that the error term ε has a mean value equal to
zero and constant variance.

Since parameters βi are unknown, they should be estimated from observations of y
and xi. Let bi (i¼ 0, 1, 2, . . . , k) be the estimates in terms of βi (i¼ 0, 1, 2, . . . , k).
Recall that the error term has a 50% chance of being positive and negative, respec-
tively, so we omit this term in calculating parameters, which means

ŷ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk ð9:50Þ
Then, we use the least error squares estimate method, which minimizes the sum of
squared residuals (SSE), to obtain the parameters bi

B ¼ b0 b1 b2 � � � bk½ �T ¼ XTX
� ��1

XTY ð9:51Þ

Table 9.21 Prediction of Energy Consumption

Period t Trend T Seasonal S Predicted Actual X

21 789.963 127.340 917.303 981
22 793.610 �47.741 747.123 759
23 797.257 �143.254 654.003 674
24 800.904 63.746 864.650 900
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where Y and X are the following column vector and matrix:

Y ¼
y1
y2
..
.

yn

26664
37775 and X ¼

1 x11 x12 � � � x1k
1 x21 x22 � � � x2k
..
. ..

. ..
. ..

.

1 xn1 xn2 � � � xnk

26664
37775 ð9:52Þ

After the parameters are calculated, this model can be used for prediction. It will be
accurate in predicting y values if the standard error s is small:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE

n� k þ 1ð Þ

s
, SSE ¼

Xn
i¼1

yi � ŷið Þ2, yi : observed, ŷi : estimated

ð9:53Þ
There are also some other ways to check the validity of a regression model [1].

9.14 Autoregressive (AR) Model

In the autoregressive model, the current value Xt of the time series is expressed lin-
early in terms of its previous values Xt�1, Xt�2,. . . and a white noise series {εt} with
zero mean and variance σ2:

Xt ¼ �1Xt�1 þ �2Xt�2 þ � � � þ �pXt�p þ εt ð9:54Þ

By introducing the backshift operator B that defines Xt�1¼BXt, and consequently
Xt�m¼BmXt, we can rewrite equation (9.54) in the form

� Bð ÞXt ¼ εt ð9:55Þ

where

� Bð Þ ¼ 1��1B��2B
2 � � � � ��pB

p ð9:56Þ

Note that this model has a similar form to the multiple linear regression models.
The difference is that in regression the variable of interest is regressed onto a linear
function of other known (explanatory) variables, whereas here Xt is expressed as a
linear function of its own past values—thus, the description “autoregressive.” As
the values of Xt at p previous times are involved in the model, it is said to be an
AR ( p) model.

Now we need to calculate the parameters φi for prediction. There are two such
methods: least squares estimation and maximum likelihood estimation (MLE).

To calculate the least squares estimators, we need to minimize the expression
(here, we let p¼ 2)

XN
t¼1

Xt ��1Xt�1 ��2Xt�2ð Þ2 ð9:57Þ
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with respect to φ1 and φ2. But because we do not have the information for t¼ 1 or
t = 2, an assumption is made here that X1 and X2 are fixed, and excluding the first
two terms from the sum of squares. That is, to minimize

XN
t¼3

Xt ��1Xt�1 ��2Xt�2ð Þ2

then we use a similar approach to linear regression to obtain the parameters.
Maximum likelihood estimation is attractive because generally it is asymptotically

unbiased and has minimum variance. Therefore, we introduce this method here.
Suppose that we have a sample of dependent observations Xt, t¼ 1, . . . ,N, each

with f (Xt). Then the joint density function is

f X1,X2, � � � ,XNð Þ ¼ ∏
N

t¼1
f XtjXt�1ð Þ ð9:58Þ

where Xt denotes all observations up to and including Xt. f XtjXt�1ð Þ is the conditional
distribution of Xt given all observations prior to t.

We use the same model as before and suppose εt is normally distributed. So the
mean of the conditional distribution is �1Xt�1þ�2Xt�2, and the variance is σ2.
Therefore,

f XtjX1,X2, � � � ,XNð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2πð Þp

σ
exp

� Xt ��1Xt�1 ��2Xt�2ð Þ2
2σ2

" #
ð9:59Þ

Similarly, we set X1 and X2 to be fixed and define the conditional likelihood as

L θð Þ ¼ ∏
N

t¼3
f XtjX1,X2, � � � ,Xt�1ð Þ ð9:60Þ

By minimizing L(θ), we can obtain the parameters.
Consider a time series of the number of reported purse snatchings in a particular

area 28 days apart, as shown in Figure 9.33.
If we use the MLE applied to the AR (2) model, the fitted model is

Xt ¼ 0:0307841Xt�1 þ 0:400178Xt�2 þ εtvar εtð Þ ¼ 36:115343

Now, this model can be used to predict future data.

9.15 Moving Average (MA) Model

In the moving average process, the current value of the time series Xt is expressed
linearly in terms of current and previous values of a white noise series εt,εt�1, . . . .
This noise series is constructed from the forecast errors or residuals when load obser-
vations become available. The order of this process depends on the oldest noise value
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at which Xt is regressed. For a moving average of order q (i.e., MA (q)), this model
can be written as

Xt ¼ εt � θ1εt�1 � θ2εt�2 � � � � � θqεt�q ð9:61Þ

A similar application of the backshift operator on the white noise series would
allow equation (9.61) to be rewritten as

Xt ¼ θ Bð Þεt ð9:62Þ

where θ Bð Þ ¼ 1� θ1B� θ2B2 � � � � � θqBq.

9.16 Autoregressive Moving Average (ARMA, or
Box-Jenkins) Model

If we combine the MA and AR models, we can present a broader class of model—that
is the autoregressive moving average model—as
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Figure 9.33 Reported purse snatching in an area.
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Xt ¼ �1Xt�1 þ �2Xt�2 þ � � � þ �pXt�p þ εt þ θ1εt�1 þ θ2εt�2 þ � � � þ θqεt�q

ð9:63Þ

where �i and θj are called the autoregressive and moving average parameters, respec-
tively. And in this case, this is an ARMA (p,q) model.

A methodology for ARMA models was developed largely by Box and Jenkins
[60] so the models are often called Box-Jenkins models.

9.17 Autoregressive Integrated Moving Average
(ARIMA) Model

The time series defined previously as an AR, MA, or ARMA process is called a sta-
tionary process [6]. This means that the mean of the series of any of these processes
and the covariance among its observations do not change with time. Unfortunately,
this is not often true in a power load. But previous knowledge is definitely useful
in that the nonstationary series can be transformed into a stationary one with some
tricks. This transformation can be achieved, for the time series that are nonstationary
in the mean, by a differencing process. By introducing the ∇ operator, we can write a
differenced time series of order one as

∇Xt ¼ Xt �Xt�1 ¼ 1�Bð ÞXt ð9:64Þ
Consequently, an order d differenced time series is written as

∇dXt ¼ 1�Bð ÞdXt ð9:65Þ
The differenced stationary series can be modeled as AR,MA, or ARMA to yield an ARI,
IMA, or ARIMA time-series process. For a series that needs to be differenced d times
and has orders p and q for the AR and MA components (i.e., ARIMA (p, d, q)), the
model is written as

� Bð Þ∇dXt ¼ θ Bð Þεt ð9:66Þ
However, as a result of daily, weekly, yearly, or other periodicities, many time series

exhibit periodic behaviors in response to one or more of these periodicities. Therefore, a
seasonal ARIMA model is appropriate. It has been shown that the general multiplica-
tive model (p, d, q) * (P,D,Q)s for a time-series model can be written in the form

� Bð ÞΦ BS
� �

∇d∇D
S Xt ¼ θ Bð ÞΘ BS

� �
εt ð9:67Þ

where definitions for ΦðBSÞ, ∇D
S , ΘðBSÞ are given in the following:

∇D
S ¼ Xt �Xt� Sð ÞD ¼ 1�BS

� �D
Xt ð9:68Þ

Φ BS
� � ¼ 1�Φ1B

S �Φ2B
2S � � � � �ΦpB

pS ð9:69Þ
Θ BS
� � ¼ 1�Θ1B

S �Θ2B
2S � � � � �ΘqB

qS ð9:70Þ
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The model presented in equation (9.67) can obviously be extended to the case in
which data for two seasons are accounted for. An example demonstrating seasonal
time-series modeling is the model for hourly load data with a daily cycle. Such a
model can be expressed using the model of equation (9.67) with S¼ 24.

To obtain this model, we use the parameters p, d, q, P, D, Q, and other coefficients. By
studying the self-variance, covariance, and variance function of the order one or higher-
order differentiation of variables we get the d and D. Then the model can be simplified
into AR, MA, or ARMA models to calculate other values so that the model can be built.

9.18 ARMAX and ARIMAX Models

ARMA and ARIMA use only the time and load as input parameters. Because load gen-
erally depends on the weather and time of the day, exogenous variables sometimes can be
included to give the ARMAX and ARIMAX models [7]. Other useful methods imple-
menting evolutionary programming (EP) and fuzzy logic (FL) into conventional time-
series models were also proposed. We will not consider these methods in detail here.

9.18.1 Remarks

No one method can be applicable to all situations. So a method should be chosen con-
sidering many factors, such as the time frame, pattern of data, cost of forecasting,
desired accuracy, availability of data, and ease of operation and understanding. There-
fore, more work still needs to be done to include all these factors.
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